

NATIONAL ASTRONOMICAL OBSERVATORIES , CHINESE ACADEMY OF SCIENCES

X-ray counterpart of GWs due to binary neutron star mergers

-- light curves, luminosity function and event rate density

Hui Sun (Peking University, NAOC)

Collaborators: Bing Zhang (University of Nevada, Las Vegas), He Gao (Beijing Normal University)

The X-ray Universe 2017 Italy_Rome June 6-9

Gravitational Wave detections

Binary Black Hole mergers

Binary Neutron star mergers

Abbott et al. 2016c, LRR, 19,1

 10^{2}

 10^{1}

June/6-9/2017

Frequency/Hz

 10^{3}

Advanced LIGO

Gravitational Wave detections

Binary Black Hole mergers

Binary Neutron star mergers

June/6-9/2017

NS-NS merger

EM counterparts following NS-NS mergers

EM counterparts following NS-NS mergers

Magnetar

'Smoking gun'

Rowlinson et al. 2010

With the joint BAT-XRT light curve analysis, a minimum 22% of supra-massive NSs as the central engine of sGRBs.

Lv et al. 2015, Gao et al. 2016, PRD

June/6-9/2017

Model

- Magnetar as central engine.
- Isotropic wind emission.
- Different viewing angles.

Spin down law :

June/6-9/2017

Yu et al. 2013, Zhang 2013, Sun et al. 2017

Model

Magnetar as central engine.

- Isotropic wind emission.
- Different viewing angles.

Jet/Free zone emission (spin down wind dissipation:)

$$L_{\rm X, free}(t) = \eta L_{\rm sd} = \frac{\eta B_p^2 R^6 \Omega^4(t)}{6c^3}$$

June/6-9/2017

Model

Magnetar as central engine.

- Isotropic wind emission.
- Different viewing angles.

Jet/Free zone emission (spin down wind dissipation:)

$$L_{\rm X, free}(t) = \eta L_{\rm sd} = \frac{\eta B_p^2 R^6 \Omega^4(t)}{6c^3}$$

Yu et al. 2013, Sun et al. 2017

June/6-9/2017

Simulations

Why do we do simulations?

No detections of sGRB-less X-ray events yet!

Gao et al. 2016

June/6-9/2017

Simulations

A gallery of possible LCs

X-ray emission can reach as bright as 10^{49} erg s⁻¹ in free zone.

It takes around ten ks to get the ejecta transparent.

X-ray emission is around 10^{46-47} erg s⁻¹ in trapped zone.

Merger-nova is too dim to observe in X-ray band.

Sun et al. 2017

Simulated luminosity function

With no confirmed obs., k_{Ω} is constraint to be the order of unity. Sun et al. 2017

Global distribution of event rate density

 GM1 BSk20 BSk21 Shen CIDDM CDDM1 log p_{0,>L} (Gpc⁻³ yr⁻¹) CDDM2 ★ LL-LGRBs + SBOs ♦ Normal TDEs △ Swift TDEs ▼ HL-LGRBs GRBs ∇ 50 46 48 52 54 log L (erg s⁻¹)

In comparison with other **observed** extra-galactic high-energy transients:

- Long & Short GRBs
- SN shock breakouts
- Tidal disruption events

Sun et al. 2017

June/6-9/2017

June/6-9/2017

Detection rate

- BAT could detect 1-2 such transients every year.
- Einstein Probe will detect several tens such transients every year, while present X-ray telescopes are much less efficient.
- The joint aLIGO & high-energy detections of such events should be rare, roughly 1 per year all sky.

Conclusions

- The peak LF is bimodal, which can be fitted with two log-normal distribution components from free/trapped zone, respectively.
- We constraint the solid angle ratio of free zone to jet zone to unity.
- The event rate density of these transients above 10⁴⁵ erg s⁻¹ is around a few tens of Gpc⁻³ yr⁻¹.
- The joint aLIGO-high-energy detections of such events should be rare, roughly 1 per year all sky. The detectability mostly depends on the field of view of the wide field X-ray/soft gamma-ray detectors.

June/6-9/2017

