A Multiwavelength Study of the Gamma-ray Binaries 1FGL J1018.6-5856 and LMC P3

Joel B. Coley NASA Postdoctoral Fellow, Mail Code 661, Astroparticle Physics Laboratory NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA

Image Courtesy: https://svs.gsfc.nasa.gov/10507

Microquasars

- Microquasars—accreting XRBs with relativistic radio jets
- Gamma-ray emission powered by inverse Compton scattering of UV photons
- Emission peaks at X-ray energies

Image Courtesy: Mirabel et al. (2012)

Gamma-Ray Binary Population

TABLE 3 GAMMA-RAY BINARIES

	LS 5039	1FGL J1018.6-5856	LS I+61 303°	${ m HESS}$ J0632+057	PSR B1259-63	LMC P3	$\mathrm{PSR}\ \mathrm{J2032}{+}4127^a$
$P_{ m orb}$ e	\sim 3.91 d \sim 0.24	~16.54 d	$\sim 26.5 d$ ~ 0.54	~315 d ~0.83	$\sim 1236.7 \mathrm{d}$ ~ 0.87	~10.3 d <0.7	40–50 yr 0.94
i	13-64	$\sim 25-40?$	10-60	47-80	19-31	<66	
Spectral Type	O6.5 V(f)	O6 V(f)	B0 Ve	B0 Vpe	O9.5 Ve	O5 III(f)	B0 Ve
M/M_{\odot}	23	26	12	16	31	25 - 42	14.5 - 17.5

NOTE.—^aPSR J2032+4127 is a candidate HMGB that is expected to be gamma-ray bright in 2017 October–November near periastron

Pulsar Wind Systems: Link to HMXBs?

Driven by particle acceleration (Fermi Mechanism)Evolve into HMXBs?

Image Courtesy: Mirabel et al. (2012)

Why are HMGBs important?

- MeV-GeV emission dominates the spectral energy distribution
- Emission seen between radio and TeV energy bandpasses
- Rare: only seven HMGBs have been found
- Gamma-ray binaries—early stage in HMXB evolution?
- Extreme Particle Accelerators

Gamma-Ray Binary 1FGL J1018.6-5856

J. B. Coley¹, R. H. D. Corbet², C. C. Cheung³, M. Coe⁴, G. Dubus⁵, P.

Edwards⁶, V. A. McBride⁷, M. V. McSwain⁸, J. Stevens⁶ ¹NASA Postdoctoral Program/USRA/NASA GSFC 661, ²UMBC/NASA GSFC/CRESST 662, ³Naval Research Lab., ⁴Univ. of Southampton, ⁵IPAG Grenoble, ⁶CSIRO Astronomy & Space Science, ⁷Univ. of Cape Town, ⁸Lehigh Univ.

1FGL J1018.6-5856, the first gamma-ray binary discovered by the Fermi Large Area Telescope (LAT), consists of an O6 V(f) star and suspected rapidly spinning neutron star. While 1FGL J1018.6-5856 has been postulated to be powered by the interaction between a relativistic pulsar wind and the stellar wind of the companion, a microquasar scenario where the compact object is a black hole cannot be ruled out. We present the first extensive multi-wavelength analysis of 1FGL J1018.6-5856 with the Australia Telescope Compact Array (ATCA), Fermi LAT and the Swift X-ray Telescope to better study the emission properties over the 16.531±0.006 day orbital modulation. The radio amplitude modulation is found to decline with increasing frequency, which is a possible indication of free-free absorption. This is further supported by the absence of clear modulation in the highest-frequency, 33.0 and 35.0 GHz bands, which were not previously reported. The best-fit spectral model of the Swift XRT data consists of a single powerlaw with photon index 1.3—1.7 modified by an absorber that fully covers the source. This is possible evidence that 1FGL J1018.6-5856 is a non-accreting system.

Folded Gamma-Ray Light Curve

Fermi LAT light curve in the 0.1-300 GeV band (top) based on a likelihood analysis folded on the 16.5 day orbital period. The hardness ratio (bottom) is produced taking the results from the likelihood analyses of the soft and hard energy bands, 0.1-1 GeV and 1-300 GeV, respectively.

Folded X-Ray Light Curve

Swift XRT X-ray light curves folded on the orbital period. The light blue data is prior to MJD 55984^(1,2). The black data points after MJD 55984^(2,1,4). The modulation a sharp maximum at phase 0 and a broad maximum phase ~0.4. This is consistent with previous observations^(1,2,5).

Phase-Resolved Radio Spectra

Orbital phase-resolved ATCA radio spectra covering frequencies in the 2.1-35.0 GHz band. The red lines indicate the best fit for a power-law model, which is a possible indication of free-free absorption.

Folded Radio Light Curves

ATCA radio light curves folded on the orbital period. A broad maximum is found at phase 0.4. The amplitude modulation decreases with increasing frequency. Light curves at 33.0 and 35.0 GHz do not show clear modulation on the orbital period⁽⁴⁾.

Radial Velocity Semi-Amplitude

- SOAR Radial Velocity Semi-Amplitude
- Mass function consistent with Neutron Star
- Black hole only allowable: i<16 degrees</p>

Image Courtesy of Strader et al. (2015)

Folded Fermi LAT Light curve and Hardness Ratio

Soft and hard energy bands are 0.1-1 GeV and 1-300 GeV

Phase 0 defined by the ascending node of the compact object
 Narrow spike at orbital phase ~0.75 (INFC)

Folded Swift X-ray Lightcurves of 1FGL J1018.6-5856

Quasi-sinusoidal X-ray modulation with narrow spike at phase 0.75 (INFC) and broad peak at phase ~0.0 (periastron?)

Folded Radio Lightcurves of 1FGL J1018.6-5856

- No narrow spike at phase 0.75 (inferior conjunction)
- Broad Peak found at orbital phase ~0.0
- Radio amplitude modulation decreases with increasing frequency

Image Modified from Coley et al. (2014b)

Orbital Phase-Resolved ATCA Radio Spectra

Covers frequencies in the 2.1-35.0 GHz band

11

Modeled with a power law; possible indication of free-free absorption

ATCA Spectral Parameters

- Power-law frequency index of the ATCA radio data folded on the orbital period (left)
- Spectral index of the ATCA radio spectra vs. flux density (right)

12

Preliminary Free-Free Absorption Model

- Power law modified by free-free absorption
- Orbital Inclination: 33-37 degrees
- Eccentricity cannot be constrained

Emission Region Constraints

Radio fluxes in the 5.5-19.0 GHz bands correlated with 0.3-10 keV X-ray flux

14

© 2016. The American Astronomical Society. All rights reserved.

A LUMINOUS GAMMA-RAY BINARY IN THE LARGE MAGELLANIC CLOUD

R. H. D. CORBET^{1,2}, L. CHOMIUK³, M. J. COE⁴, J. B. COLEY⁵, G. DUBUS⁶, P. G. EDWARDS⁷, P. MARTIN⁸, V. A. McBRIDE^{9,10}, J. STEVENS⁷, J. STRADER³, L. J. TOWNSEND⁹, AND A. UDALSKI¹¹ ¹ University of Maryland, Baltimore County, and X-ray Astrophysics Laboratory, Code 662 NASA Goddard Space Flight Center, Greenbelt Rd., MD 20771, USA ² Maryland Institute College of Art, 1300 W Mt Royal Ave, Baltimore, MD 21217, USA ³ Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA ⁴ University of Southampton, School of Physics and Astronomy, Southampton SO17 1BJ, UK ⁵ NASA Postdoctoral Program, and Astroparticle Physics Laboratory, Code 661 NASA Goddard Space Flight Center, Greenbelt Rd., MD 20771, USA ⁶ Institut de Planétologie et d'Astrophysique de Grenoble, Univ. Grenoble Alpes, CNRS, F-38000 Grenoble, France ⁷ Commonwealth Scientific and Industrial Research Organisation Astronomy and Space Science, P.O. Box 76, Epping, New South Wales 1710, Australia ⁸ Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse, CNRS, F-31028 Toulouse cedex 4, France ⁹ Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa ¹⁰ South African Astronomical Observatory, P.O. Box 9, Observatory 7935, South Africa ¹¹ Warsaw University Observatory, Al. Ujazdowskie 4, 00-478 Warszawa, Poland *Received 2016 June 9; revised 2016 August 11; accepted 2016 August 13; published 2016 September 27*

ABSTRACT

Gamma-ray binaries consist of a neutron star or a black hole interacting with a normal star to produce gamma-ray emission that dominates the radiative output of the system. Only a handful of such systems have been previously discovered, all within our Galaxy. Here, we report the discovery of a luminous gamma-ray binary in the Large Magellanic Cloud, found with the *Fermi* Large Area Telescope (LAT), from a search for periodic modulation in all sources in the third *Fermi* LAT catalog. This is the first such system to be found outside the Milky Way. The system has an orbital period of 10.3 days, and is associated with a massive O5III star located in the supernova remnant DEM L241, previously identified as the candidate high-mass X-ray binary (HMXB) CXOU J053600.0–673507. X-ray and radio emission are also modulated on the 10.3 day period, but are in antiphase with the gamma-ray modulation. Optical radial velocity measurements suggest that the system contains a neutron star. The source is significantly more luminous than similar sources in the Milky Way, at radio, optical, X-ray, and gamma-ray wavelengths. The detection of this extra-galactic system, but no new Galactic systems, raises the possibility that the predicted number of gamma-ray binaries in our Galaxy has been overestimated, and that HMXBs may be born containing relatively slowly rotating neutron stars.

Key words: gamma rays: stars - stars: individual (CXOU J053600.0-673507) - stars: neutron

1. INTRODUCTION

Although hundreds of interacting binary systems are known X-ray emitters (Liu et al. 2006, 2007), very few systems produce detectable gamma-ray emission. Here we classify gamma-ray binaries as those systems where most of the the duration of the gamma-ray binary phase, and the gammaray luminosity. From their binary population synthesis study, Meurs & van den Heuvel (1989) predicted about 30 binaries containing neutron stars during their pulsar phase, which could thus be gamma-ray binaries. Following the launch of the *Fermi Gamma-ray Space Telescope* mission in 2008, its Large Area

LMC P3

First Extragalactic Gamma-ray binary

- Embedded in SNR DEM L241 in the Large Magellanic Cloud
- Optical companion spectral type is O5 III (f)

Image Courtesy: Seward et al. (2012)

16

Radial Velocity Semi-Amplitude

- SOAR Radial Velocity Semi-Amplitude
- Mass function consistent with Neutron Star
- Black hole only allowable: i<15 degrees</p>

Image Courtesy of Corbet et al. (2016)

Multiwavelength Light Curves of LMC P3

ATCA (top), Swift XRT (middle) and Fermi (bottom) light curves

- No apparent cycle-to-cycle variability in X-ray bandpass
- Order of magnitude more luminous in X-ray and radio

Image Modified from Corbet et al. (2016)

Swift Cumulative Spectrum

- Power law fit with spectral index ~1.3
- No constraints on NH
- Hampered by low S/N; low effective area

Image Courtesy of Corbet et al. (2016)

Approved AO-16 XMM and NuSTAR Cycle 3 Observations

- Investigate phase dependence of N_H , Γ , and X-ray flux
- Search for possible neutron star rotation period with EPIC-pn
- Measure Γ and X-ray flux out to 40 keV (NuSTAR)

20

Image Courtesy: http://sci.esa.int/xmm-newton/18015-xmm-newton-spacecraft/

XMM-Newton Simulated Spectrum

Three Observations: X-ray Max, X-ray Min, Inferior Conjunction
 Estimated Uncertainties on Γ and flux better than 5% and 8%
 Three Measurements of N_H

Conclusions

- IFGL J1018.6-5856: Refined orbital period, reduced uncertainty by ~3
- IFGL J1018.6-5856: Radio and X-ray modulation hints at free-free absorption
- LMC P3: 4× more luminous in GeV; 10× more luminous in X-ray and radio
- LMC P3: Luminosity likely driven by increased power injection
- LMC P3: O5 III (f) star hotter and more luminous than the O6 V (f) star in 1FGL J1018.6-5856

Collaborators

Dr. Patricia Boyd (GSFC); Dr. Robin Corbet (UMBC/ CRESST); Dr. Koji Mukai (UMBC/CRESST); Dr. Katja Pottschmidt (UMBC/CRESST), Dr. Hans Krimm (USRA/NSF), Aaron Pearlman (CalTech); Greg Huxtable (UMBC); Trevor Torpin (CUA); Dr. Guillaume Dubus (Grenoble), Dr. Philip Edwards (CSIRO), Dr. Jamie Stevens (CSIRO); Dr. Mark Henriksen (UMBC)

Bibliography

Ackermann, M., et al. 2012, Science, 335, 189 An, H., Dufour, et al. 2013, ApJ, 775, 135 Coley, J.B., et al. et al. 2016, AAS/HEAD, 15, #120.08 Corbet, R., et al. 2016, ApJ, 829, 105 Mirabel, I. F. 2012, Science, 335, 13 Seward, F. D., et al. 2012, ApJ, 759, 123