X-ray Reflection from BHB Accretion Disks: Coronal Geometry & Disk Truncation

Javier García California Institute of Technology, Pasadena Dr Karl-Remeis Observatory, Bamberg

In collaboration with: Thomas Dauser, Jack Steiner, Victoria Grinberg, Jingyi Wang, Fiona Harrison, Joern Wilms, Jeff McClintock, & John Tomsick

Whirlpool in Lake Onalaska Photo: Bob King

The X-ray Universe, Rome, June 6 2017

The Case of GX 339-4

The Case of GX 339-4

Reflection Signatures

Ratio to a power-law model shows the signatures of reflection

Disk and Corona Evolution

Simultaneous fit of the RELXILL model to a 77 million count RXTE spectra revealed changes in disk and corona.

Large disagreement with other reflection spectroscpy results!

Reflection spectroscopy results: Calibration issues?

1.5 1.4 + + NuSTAR/FPMB + + XMM-Newton/pn (Timing mode) 1.1 1.2 1.2 1.2 1.2 1.2 0.9 0.8 2 4 CX 339-4 (Wang et al.) Energy (keV)

XMM (TM) vs. RXTE

- 2009 Outburst: High count rate
- Very different Fe K line profile: XMM looks narrower

XMM (TM) vs. NuSTAR

- 2015 Outburst: lower count rate
- Significantly different continuum slope
- But good agreement between NuSTAR and Swift XRT

Large disagreement with both spectral (reflection) and timing results!

Large disagreement with both spectral (reflection) and timing results!

Comparison with Timing Analysis

Reverberation Lags (De Marco et al. 2016)

Reflection Spectroscopy (Garcia et al. 2017)

Are we measuring the same Physical Quantity?

- Simple "back of the envelope" estimates
- More rigorous estimate requires detailed modeling of the lagenergy spectra with the proper transfer function

Comparison with Timing Analysis

Are we measuring the same Physical Quantity?

QPO's and Lense-Thirring Precession

- Mass and distance are unknown for GX 339-4
- Is LT precession the correct interpretation of QPO's?
- Are there observational limitations?
- Can we detect the highest frequency QPOs?
- Do the amplitude and intensity of the QPO depend on the frequency?

Future developments

 Self-consistent modeling of the continuum emission via the lamppost geometry (see M. Fink's Poster J10) ToO for bright HS of GX 339-4 during NuSTAR's Cycle 3

- Systematic exploration of all bright BHB in the RXTE archive
- New faster and more accurate reflection models (see T. Dauser's talk on Thursday)

Summary

- The problem of disk truncation in the bright hard-state of BHBs is still an open problem
- Reflection Spectroscopy results are in strong disagreement only with XMM-Newton data in Timing Mode
- Thus, data calibration is likely the source of the discrepancy
- Timing studies also predict large disk truncation, in disagreement with the reflection spectra.
- Yet, the physical interpretation of time lags or QPOs is less clear and might require careful revision