

Calibrating the Athena telescope

Jos de Bruijne¹, Matteo Guainazzi¹, Jan-Willem den Herder², Marcos Bavdaz¹, Vadim Burwitz³, Philippe Ferrando⁴, David Lumb¹, Lorenzo Natalucci⁵, François Pajot⁶, Giovanni Pareschi⁷, Steven Sembay⁸, Daniele Spiga⁷, Richard Willingale⁸, Hironori Matsumoto⁹, Takashi Okajima¹⁰

Athena is ESA's upcoming X-ray mission, currently set for launch in 2028. With two nationally-funded, state-of-the-art instruments (a high-resolution spectrograph named X-IFU and a wide-field imager named WFI), and a telescope collecting area of $1.4-2~\text{m}^2$ at 1 keV, the calibration of the spacecraft is a challenge in itself. This poster presents the current (spring 2017) plan of how to calibrate the Athena telescope. It is based on a hybrid approach, using bulk manufacturing and integration data as well as dedicated calibration measurements combined with a refined software model to simulate the full response of the optics.

