X-ray Universe 2017 @Rome July 09 2017

Arcsecond and Sub-arcsecond Imaging with Multi Image X-ray Interferometer for

(Very) Small Satellites

<u>K. Hayashida</u>, T. Kawabata,

H. Kurubi, H. Nakajima, S. Inoue, H. Tsunemi (Osaka University)

-Instruments for X-ray Astronomy- Agree?

- 1. Telescopes are build with Grazing Incidence Mirrors with FL of 3-12m plus Pixel Detectors.
- 2. 0.5" resolution mirror is exceptional. It is very much difficult to reproduce it now. primarily
- 3. Slits, Masks or Collimators are used for wide FOV surveys, in which angular resolution is limited to ~10arcminutes.
- 4. Interferometers have been proposed. Some function in lab, but application in orbit are even more difficult.

Multi-Pinhole(Slit) Camera is the baseline

http://blog.goo.ne.jp/hanahana haru04/e/a8ef27218dee371313 6a89943109a431

STACK these multiple images in the analysis

- Only employ a Grating and an X-ray Pixel Detector
- Image profile detected reflects the profile of the X-ray source.
- Stacking the image with a period of *d* in the analysis, accurate source profile is obtained.

• Image Width
$$\theta = fd/z = 0.4'' \left(\frac{f}{0.2}\right) \left(\frac{d}{5\mu m}\right) / \left(\frac{z}{50cm}\right)$$

Chandra Resolution with a 50cm size satellite ?

But, but, Talbot Effect can be employed

Talbot Effect

- Parallel Light through a grating makes **Self Image** of the grating at periodic distances. (H.F.Talbot, 1836)
- Explained with **Diffraction** and **Interference** (Rayleigh, 1881)
- Hard X-ray Talbot Effect in experiment (P. Cloetens, 1997)

• Talbot Distance $z_T = m \frac{d^2}{\lambda}$

Talbot Carpet Image from Wen et al. Advances in Optics and Photonics 5, 83-130 (2013)

For $\lambda = 0.1$ nm(12keV) X-rays and a $d = 5\mu$ m pitch grating, Talbot distance z_T of m=2 is 50cm

At Talbot Distance $d=5\mu m f=0.2$ z=0.5m $\lambda=0.100nm (m=2)$

Simulated Image Profile with Fresnel Approximation (not stacked)

 λ dependence at a fixed setup $d=5\mu m f=0.2$ z=0.5m (m=2)

Band width $(\Delta \lambda / \lambda) = 1\%$

Position (μ m) on the Detector

λ dependence at a fixed setup $\frac{d=5\mu m f=0.2}{z=0.5m m=2}$

Band width $(\Delta \lambda / \lambda) = 10\%$ m=2 Position (µm) on the Detector

Another X-ray beam incidence from **0.5arcsec** offset direction

Band width $(\Delta \lambda / \lambda) = 10\%$ m=2 Position (µm) on the Detector

Multi Image X-ray Interferometer Module (or Mission) = MIXIM

- X-ray Grating with a few~10's μm pitch and X-ray Imaging
 Spectrometer
- Select X-ray Events of which energy is within specific band around the Talbot condition.
 - Band-pass Δλ/λ of about 10% (for m=2; 20% for m=1) can be utilized. Wider than Si-detector energy resolution of 1~2%. Good for X-ray CCD and X-ray CMOS.
- Stacked Image tell us the X-ray source profile

c.f. X-ray Talbot (-Lau) Interferometer Momose+(2003), Pfeiffer+(2006) for Phase Contrast X-ray Imaging of Light Material

Figure from http://rsif.royalsocietypublishing.org/content/7/53/1665

Hoshino+ 2014 KONICA MINOLTA TECHNOLOGY REPORT Vol11

Lab. Experiment with Spherical Wave

<u>X-ray CMOS</u> (XRPIX2b)

inside Vacuum Chamber Cooled -40degC Window=0.2mm Thick Al

<u>microFocusX-ray</u>

60kV, 100μA, Target=W Source Size=3~5μm

<u>X-ray Grating</u> Pitch $d=4.8\mu m$ Open frac. f=0.5

152 x 152 Pixel Array Pixel = 30 um x 30 um

XRPIX2b (Tsuru+2014)

pixel size 30µm

152x152 pix

TRIG_ROW

Lab. Experiment Results 2/2

Projected Profile (One Part)

R=42mm, Mag. =25x

120um*(*a)

0.8

0.7

0.5

R=102mm,Mag.=10x

$$z_T = rac{L}{2} \left(1 - \sqrt{1 - rac{4md^2}{\lambda L}}
ight)$$

R=235mm (correspond to Talbot Condition),

.m@XRPIX. 0.7

0.4

0.5

0.6

0.7 Pixel

0.2

0.3

 micro-Focus source size of 3-5um is not small enough to be regarded as a point source as illustrated in the Stacked profile.

0.8

51µm@XRPIX

1.2 1.4

0.8

0.8

0.2

0.4

0.6

Near Field $z \ll z_T$

 $d=25\mu m, f=0.2, \lambda_0=0.1nm$ $z=0.5m << z_T(m=1) = 6.25m$

Hayashida+2016SPIE Proc. and Updates

Very Preliminary Design

•
$$z = md^2/\lambda = 50 \operatorname{cm}\left(\frac{m}{2}\right) \left(\frac{d}{5\mu m}\right)^2 / \left(\frac{\lambda}{0.1nm}\right)$$

- **f** :Open. Frac.
- *z* :Distance

m :Talbot Order

•
$$\theta = \frac{fd}{z} = f\lambda/dm = 0.4'' \left(\frac{f}{0.2}\right) \left(\frac{\lambda}{0.1nm}\right) / \left(\frac{d}{5\mu m}\right) \left(\frac{m}{2}\right)$$

- Positional Resolution of Pixel Detector is essential.
- Energy Range 5-20keV
 - Grating transmission η_{gra} at open (Si filled) part, and Detector efficiency η_{det} limits the range.
- Effective Area $A_{eff} = A_{geo} \cdot \eta_{gra} \cdot \eta_{det} \cdot f \cdot \Delta \lambda / \lambda$
- FOV must be limited by collimators to ~1deg.

- Imaging capability reduce the CXB and NXB factor of f.
- Rough estimate CXB=0.2 mCrab, NXB=4mCrab Very preliminary

MIXIM options

Mission Size	Sampler	Short	Tall	Grande
Distance z	0.5m	0.5m	2m	10m
Pitch <i>d</i>	25µm	5µm	10µm	10µm
Open. Frac. <i>f</i>	0.2	0.2	0.2	0.1
Talbot Order <i>m</i> for 0.1nm X-ray	(0.1)	2	2	10
$oldsymbol{ heta}$	2"	0.4''	0.2"	0.02''
$\Delta\lambda/\lambda$	1	0.2	0.2	0.2
No. of X+Y unit (Ageo=10cm ² /unit assumed)	1+1	4+4	25+25	100+100
η_{det} at 10keV (200um Si assuemd)	0.78	0.78	0.78	0.78
Effective Area (@10keV)	3cm ²	2.5cm ²	16cm ²	31cm ²

Targets : e.g. Structure of Relatively Bright Pointlike Sources, i.e., (SM)BH and NS

Recoiled SMBH candidates

(X-ray: NASA/CXC/NRAO/D.-C.Kim; Optical: NASA/STScI)

Torus Type2 and 1 AGNs

Binary SMBHs

NASA/CXC/MPE/S.Komossa et al.

NGC1068 ALMA image

Garcia-Burillo+2016

0.002 0.004 0.006 0.008 0.008 0.000 0.00

-Instruments for X-ray Astronomy- Agree?

- 1. Telescopes are build with Grazing Incidence Mirrors with FL of 3-12m plus Pixel Detectors.
- 2. 0.5" resolution mirror is exceptional. It is very much difficult to reproduce it now. primarily
- 3. Slits, Masks or Collimators are used for wide FOV surveys, in which angular resolution is limited to ~10arcminutes.
- 4. Interferometers have been proposed. Some function in lab, but application in orbit are even more difficult.

