Measuring cosmological parameters with Gamma-Ray Bursts

Lorenzo Amati (INAF – IASF Bologna)

THE X-RAY UNIVERSE 2017

6-9 June 2017 Centro Congressi Frentani, Rome, Italy Gamma-Ray Bursts are the most luminous and remote phenomena in the Universe, with isotropic-equivalent radiated energies in X-gamma rays up to more than 10^{54} erg released in a few tens of seconds, association with star-forming regions and a redshift distribution extending to at least z = 9-10. Thus, they are in principle very powerful tools for cosmology

a) Investigating the expansion rate and geometry of the Universe, thus getting clues to "dark energy" properties and evolution

b) Exploring the early Universe (re-ionization, first stars, star formation rate and metallicity evolution in the first billion of years) THESEUS mission concept (see poster P01)

Gamma-Ray Bursts are the most luminous and remote phenomena in the Universe, with isotropic-equivalent radiated energies in X-gamma rays up to more than 10^{54} erg released in a few tens of seconds, association with star-forming regions and a redshift distribution extending to at least z = 9-10. Thus, they are in principle very powerful tools for cosmology

a) Investigating the expansion rate and geometry of the Universe, thus getting clues to "dark energy" properties and evolution

b) Exploring the early Universe (re-ionization, first stars, star formation rate and metallicity evolution in the first billion of years) THESEUS mission concept (see poster P01)

Are Gamma-Ray Bursts standard candles ?

- □ all GRBs with measured redshift (~400, including a few short GRBs) lie at cosmological distances (z = 0.033 ~9.3) (except for the peculiar GRB980425, z=0.0085)
- isotropic luminosities and radiated energy are huge, can be detected up to very high z
- no dust extinction problems; z distribution much beyond SN la but... GRBs are not standard candles (unfortunately)

- □ jet angles, derived from break time of optical afterglow light curve by assuming standard afterglow model, are of the order of few degrees
- \Box the collimation-corrected radiated energy spans the range ~5x10⁴⁹ 5x10⁵² erg

-> more clustered but still not standard (and model dependent, small sample,..)

"Standardizing" GRBs: the Ep,i – "intensity" correlation

ightarrow GRB vFv spectra typically show a peak at a characteristic photon energy E_p

measured spectrum + measured redshift -> intrinsic peak enery and radiated energy

$$E_{p,i} = E_p x (1 + z)$$

$$E_{\gamma,iso} = \frac{4\pi D_l^2}{(1 + z)} \int_{1/1+z}^{10^4/1+z} E N(E) dE \text{ erg}$$

Amati et al. (A&A 2002): significant correlation between Ep,i and Eiso found based on a small sample of BeppoSAX GRBs with known redshift

Ep,i – Eiso correlation for GRBs with known redshift confirmed and extended by measurements of ALL other GRB detectors with spectral capabilities

193 long GRBs as of 2015

- the correlation holds also when substituting Eiso with Liso (e.g., Lamb et al. 2004) or Lpeak, iso (Yonetoku et al. 2004, Ghirlanda et al., 2005)
- This is expected because Liso and Lpeak, iso are strongly correlated with Eiso
- w/r to Eiso, Lp,iso is subject to more uncertainties (e.g., light curves peak at different times in different energy bands; spectral parameters at peak difficult to estimate; which peak time scale ?)

Nava et al. 2009

the Ep,i- Liso and Ep,i - Eiso correlation holds also within GRBs (Liang et al. 2004, Firmani et al. 2008, Ghirlanda et al. 2009, Li et al. 2012, Frontera et al. 2012, Basak et al. 2013): robust evidence for a physical origin and clues to explanation

BATSE (Liang et al., ApJ, 2004)

Fermi (e.g., Li et al. , ApJ, 2012)

the Ep,i- Liso and Ep,i - Eiso correlation holds also within GRBs (Liang et al. 2004, Firmani et al. 2008, Ghirlanda et al. 2009, Li et al. 2012, Frontera et al. 2012, Basak et al. 2013): robust evidence for a physical origin and clues to explanation

BATSE (Liang et al., ApJ, 2004)

Fermi (e.g., Li et al. , ApJ, 2012)

GRB cosmology through the Ep,i - Intensity correlation

- not enough low-z GRBs for cosmology-independent calibration -> circularity is avoided by fitting simultaneously the parameters of the correlation and cosmological parameters
- does the extrinsic scatter and goodness of fit of the Ep,i-Eiso correlation vary with the cosmological parameters used to compute Eiso ?

- a fraction of the extrinsic scatter of the E_{p,i}-E_{iso} correlation is indeed due to the cosmological parameters used to compute E_{iso}
- **Ξ** Evidence, independent on SN Ia or other cosmological probes, that, if we are in a flat Λ CDM universe, Ω_M is lower than 1 and around 0.3

By using a maximum likelihood method the extrinsic scatter can be parametrized and quantified (e.g., Reichart 2001)

$$L(m, c, \sigma_v; \boldsymbol{x}, \boldsymbol{y}) = \frac{1}{2} \sum_i \log(\sigma_v^2 + \sigma_{y_i}^2 + m^2 \sigma_{x_i}^2) + \frac{1}{2} \sum_i \frac{(y_i - m x_i - c)^2}{(\sigma_v^2 + \sigma_{y_i}^2 + m^2 \sigma_{x_i}^2)}$$

• Ω_{M} could be constrained (Amati+08, 70 GRBs) to 0.27 (-0.18,+0.38) at 68% c.l. for a flat Λ CDM universe (Ω_{M} = 1 excluded at 99.9% c.l.)

Amati et al. 2008, Amati & Della Valle 2013

Perspectives

All observational cosmology tests agree: ~96% of the Universe is dark

Perspectives

All observational cosmology tests agree: ~96% of the Universe is dark

The GRB Hubble diagram extends to much higher z w/r to SNe la

➢ The GRB Hubble diagram is consistent with SNe Ia Hubble diagram and BAO points at low redshifts: reliability

□ Enlargement of the sample (+ self-calibration)

- the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an increasing accuracy in the estimate of cosmological parameters
- future GRB experiments (e.g., SVOM) and more investigations (in particular: reliable estimates of jet angles and self-calibration) will improve the significance and reliability of the results and allow to the nvestigation of dark energy

GRB #	$\Omega_{\mathbf{M}}$	w_0
	(flat)	$(flat, \Omega_M = 0.3, w_a = 0.5)$
70 (real) GRBs (Amati+ 08)	$0.27^{+0.38}_{-0.18}$	<-0.3 (90%)
156 (real) GRBs (Amati+ 13)	$0.29^{+0.28}_{-0.15}$	$-0.9^{+0.4}_{-1.5}$
250 (156 real + 94 simulated) GRBs	$0.29^{+0.16}_{-0.12}$	$-0.9^{+0.3}_{-1.1}$
500 (156 real + 344 simulated) GRBs	$0.29^{+0.10}_{-0.09}$	$-0.9^{+0.2}_{-0.8}$
156 (real) GRBs, calibration	$0.30\substack{+0.06\\-0.06}$	$-1.1\substack{+0.25\\-0.30}$
250 (156 real + 94 simulated) GRBs, calibration	$0.30\substack{+0.04\\-0.05}$	$-1.1^{+0.20}_{-0.20}$
500 (156 real + 344 simulated) GRBs, calibration	$0.30\substack{+0.03\\-0.03}$	$-1.1^{+0.12}_{-0.15}$

Amati & Della Valle 2013

$$w(z) = w_0 + \frac{w_a z}{1+z}$$

□ Enlargement of the sample (+ self-calibration)

- the simulatenous operation of Swift, Fermi/GBM, Konus-WIND is allowing an increase of the useful sample (z + Ep) at a rate of 20 GRB/year, providing an increasing accuracy in the estimate of cosmological parameters
- future GRB experiments (e.g., SVOM) and more investigations (in particular: reliable estimates of jet angles and self-calibration) will improve the significance and reliability of the results and allow to the nvestigation of dark energy

Amati & Della Valle 2013

http://www.isdc.unige.ch/theseus/

Lead Proposer (ESA/M5): Lorenzo Amati (INAF – IASF Bologna, Italy)

Coordinators (ESA/M5): Lorenzo Amati, Paul O'Brien (Univ. Leicester, UK), Diego Gotz (CEA-Paris, France), C. Tenzer (Univ. Tuebingen, D), E. Bozzo (Univ. Genève, CH)

Payload consortium: Italy, UK, France, Germany, Switzerland, Spain, Poland, Czech Republic, Ireland, Hungary, Slovenia , ESA

Interested international partners: USA, China, Brazil

THESEUS payload

Soft X-ray Imager (SXI): a set of four sensitive lobster-eye telescopes observing in 0.3 - 5 keV band, total FOV of ~1sr with source location accuracy < 1-2';</p>

□ X-Gamma rays Imaging Spectrometer

(XGIS,): 3 coded-mask X-gamma ray cameras using bars of Silicon diodes coupled with Csl crystal scintillators observing in 2 keV – 10 MeV band, a FOV of ~2sr, overlapping the SXI, with ~5' source location accuracy;

❑ InfraRed Telescope (IRT): a 0.7m class IR telescope observing in the 0.7 – 1.8 µm band, providing a 10'x10' FOV, with both imaging and moderate resolution spectroscopy capabilities

LEO (< 5°, ~600 km) Rapid slewing bus Prompt downlink

□ Unveiling the high-z GRB population with THESEUS

Redshift

THESEUS	All	z > 5	z > 8	z > 10
GRB#/yr				
Detections	387 - 870	25 - 60	4 - 10	2 - 4
Photometric z		25-60	4 - 10	2 - 4
Spectroscopic z	156 - 350	10 - 20	1 - 3	0.5 - 1

□ Shedding light on the dark energy with THESEUS

GRB #	$\Omega_{ m M}$	w_0
	(flat)	$(flat, \Omega_M = 0.3, w_a = 0.5)$
70 (real) GRBs (Amati+ 08)	$0.27^{+0.38}_{-0.18}$	< -0.3 (90%)
156 (real) GRBs (Amati+ 13)	$0.29^{+0.28}_{-0.15}$	$-0.9^{+0.4}_{-1.5}$
250 (156 real + 94 simulated) GRBs	$0.29^{+0.16}_{-0.12}$	$-0.9^{+0.3}_{-1.1}$
500 (156 real + 344 simulated) GRBs	$0.29^{+0.10}_{-0.09}$	$-0.9^{+0.2}_{-0.8}$
156 (real) GRBs, calibration	$0.30^{+0.06}_{-0.06}$	$-1.1^{+0.25}_{-0.30}$
250 (156 real + 94 simulated) GRBs, calibration	$0.30^{+0.04}_{-0.05}$	$-1.1^{+0.20}_{-0.20}$
500 (156 real + 344 simulated) GRBs, calibration	$0.30\substack{+0.03\\-0.03}$	$-1.1^{+0.12}_{-0.15}$

Conclusions

- Given their huge radiated energies and redshift distribution extending from ~ 0.1 up to > 9, GRBs, besides being the most relativistic sources in the Universe, are potentially a very powerful cosmological probe, complementary to other probes (e.g., SN Ia, clusters, BAO)
- The Ep,i intensity correlation is a promising tool for "standardizing" GRBs for measuring cosmological parameters: recent analyses provide already evidence, independent on , e.g., SN Ia, that if we live in a flat ΛCDM universe, Ωm is ~ 0.3, consistent with "standard" cosmology)
- Future GRB experiments and investigations will allow to get clues on "dark energy" EOS (cosmological constant vs "quintessence", etc.) and its evolution, and testing alternative, e.g., f(R), cosmologies.
- The THESEUS mission (submitted to ESA/M5 by an Italy-led European collaboration, with interest of USA, China, Brazil) will also fully exploit GRBs as powerful and unique tools to investigate D.E. and early universe
- Researcher from worldwide institutions already provided their support to THESEUS/M4). Please, provide your interest / support to <u>amati@iasfbo.inaf.it</u> or through the THESEUS web-site: http://www.isdc.unige.ch/theseus/

□ Shedding light on the early Universe with THESEUS (P01)

