The Seyfert 1.5-1.9 galaxy Mrk 915 (z=0.024) has been the target of an X-ray monitoring programme, spanning from 1 month down to few hours, carried out with Swift, XMM-Newton and NuSTAR.

Our Swift-XRT daily monitoring revealed the presence of a partial covering ionized and variable absorber.

The X-ray monitoring programme carried out jointly by XMM-Newton and NuSTAR reveals the presence of a two-phase warm absorber: a fully covering mildly ionized structure and a partial covering lower ionized one.

A high-column density distribution of neutral matter covering a small fraction of the central region is also observed.

We tentatively locate this complex absorber closer to the central source than the narrow line region, possibly in the broad line region, in the innermost part of the torus, or in between.

The neutral obscurer may either be part of this same stratified structure (as observed e.g. in NCG 5548; Kaastra et al. 2014, Science, 345, 64) or associated with the walls of the torus, grazed by (and partially intercepting) the line of sight.

Variability: Variations are mainly due to a decreasing of the direct continuum by a factor of \(1.5\). No variations in the PC ionized absorber are also detected; the data are consistent with no variation of the TC ionized absorber and the PC neutral absorber (see Fig. 3).

(Ballo et al. MNRAS in press, arXiv:1705.11114)

Fig. 1 XMM-Newton and NuSTAR spectra compared with the two emission states observed during the Swift-XRT monitoring.

Fig. 2 Unfolded EPIC-pn and FPMA spectra, with the best-fit model applied (red line).

The adopted model is a power law seen through two ionized layers of material, one total covering and one partially covering ([1] and [2] identify the fraction of continuum covered and uncovered, respectively), plus reflection from distant material [3] and a narrow emission line [4]; the whole emission is absorbed by neutral material partially covering the central part.

RGS data The high-resolution spectra suggest the presence of a multi-layer partially ionized absorber. A few emission lines are also observed.

EPIC-pn/FPMA spectra The data are described within an "absorption-based" scenario (see e.g. Fig. 2):
- an intrinsic power law with \(\Gamma\sim 1.85\);
- a two-phase warm absorber:
 - TC: log \(\xi/(\text{ergs cm s}^{-1})\) \(-2.3, N_H \sim 10^{21}\) cm\(^{-2}\), 100% covering;
 - PC: log \(\xi/(\text{ergs cm s}^{-1})\) \(-0.6, N_H \sim 10^{23}\) cm\(^{-2}\), 90% covering;
- a PC neutral absorber: \(N_H \sim 10^{21}\) cm\(^{-2}\), \(-30\%\) covering;
- cold reflection from distant matter, with reflection fraction \(R\sim 0.6\).

(Ballo et al. MNRAS in press, arXiv:1705.11114)