

Smithsonian Astrophysical Observatory

X-RAY MORPHOLOGICAL ANALYSIS OF THE PLANCK ESZ SELECTED CLUSTERS

(submitted to ApJ)

Lorenzo Lovisari

lorenzo.lovisari@cfa.harvard.edu

William R. Forman, Christine Jones, Stefano Ettori, Felipe Andrade-Santos, Monique Arnaud, Jessica Démoclès, Gabriel W. Pratt, Scott Randall, Ralph Kraft

Rome, 9 June 2017

The X-ray Universe 2017

Scaling relations & Cosmology

10¹

10⁰

 $h(z)^{-1} L_X < R_{500}$ (10⁴⁴ erg

relaxed and disturbed systems populate different regions of the residual space of scaling relations...**increased scatter**

calibration of the scaling relations better done with relaxed clusters note that recent studies disfavor strong departure from HE for relaxed clusters

Goals

- simple criteria to identify the most relaxed (or most disturbed) galaxy clusters from a sample
- study the dependence on the cluster properties

Morphological parameters

Morphological parameters

- central density n_e
- cuspiness a
- concentration c
- Gini coefficient
- centroid-shift w
- power ratios P30-P40

ellipticity

more sensitive to the core properties of the clusters

more sensitive to the presence of substructures

Sample

Planck All-Sky Early SZ (ESZ) Cluster Sample: <u>188 objects</u>

redshift<0.55 mass range 1.7×10^{14} - $1.6 \times 10^{15} M_{\odot}$

155 observed with XMM-Newton (5 completely flared)

120 clusters R₅₀₀<FOV

10⁻² 10⁻¹ 10⁰

Although the different plots show a significant intrinsic scatter, the expected correlation between several parameters can still be observed

visual classification by 6 astronomers with grade 1-4

relaxed mean grade <2
disturbed mean grade >3
"mix" all the others

Robustness tests

- <u>repeated classification</u>
 σ_{rel,dist}=0.12 σ_{mix}=0.37
- <u>reduce image quality</u>
 σ=0.14

semi-disturbed

disturbed

Par	relaxed			disturbed				
	L_r	\mathbf{C}_{r}	\mathbf{P}_r	\mathbf{P}_{ext}	L_d	C_d	\mathbf{P}_d	\mathbf{P}_{ext}
n_e	>6.0e-3	0.97	0.71	0.41	<3.1e-2	1.00	0.49	0.27
n_e	>2.0e-2	0.39	0.88	0.56	<7e-3	0.54	0.94	0.58
w	<2.1e-2	1.00	0.84	0.49	>1.0e-2	0.96	0.73	0.36
w	<1.2e-2	0.82	0.97	0.61	>1.8e-2	0.82	0.92	0.50
c	>0.15	1.00	0.84	0.48	< 0.22	0.89	0.64	0.35
c	>0.27	0.53	1.00	0.67	< 0.15	0.75	1.00	0.57
Gini	>0.6	0.95	0.69	0.40	< 0.75	1.00	0.54	0.28
Gini	>0.74	0.45	0.94	0.68	< 0.60	0.43	0.86	0.48
P30	<1.0e-7	0.89	0.77	0.45	>2.0e-8	0.93	0.57	0.31
P30	<2.0e-8	0.47	0.90	0.58	>2.0e-7	0.54	1.00	0.78
P40	<1.5e-8	0.89	0.87	0.57	>5.0e-9	0.93	0.58	0.30
cusp	>0.10	0.97	0.64	0.35	<1.00	0.93	0.44	0.24
ell	>0.70	0.95	0.72	0.43	< 0.80	0.86	0.69	0.37

Par	relaxed			disturbed				
	L_r	\mathbf{C}_{r}	\mathbf{P}_r	\mathbf{P}_{ext}	L_d	C_d	\mathbf{P}_d	\mathbf{P}_{ext}
n_e	>6.0e-3	0.97	0.71	0.41	<3.1e-2	1.00	0.49	0.27
n_e	>2.0e-2	0.39	0.88	0.56	<7e-3	0.54	0.94	0.58
w	<2.1e-2	1.00	0.84	0.49	>1.0e-2	0.96	0.73	0.36
w	< 1.2e-2	0.82	0.97	0.61	> 1.8e-2	0.82	0.92	0.50
с	>0.15	1.00	0.84	0.48	< 0.22	0.89	0.64	0.35
c	>0.27	0.53	1.00	0.67	< 0.15	0.75	1.00	0.57
Gini	>0.6	0.95	0.69	0.40	< 0.75	1.00	0.54	0.28
Gini	>0.74	0.45	0.94	0.68	< 0.60	0.43	0.86	0.48
P30	<1.0e-7	0.89	0.77	0.45	>2.0e-8	0.93	0.57	0.31
P30	<2.0e-8	0.47	0.90	0.58	>2.0e-7	0.54	1.00	0.78
P40	<1.5e-8	0.89	0.87	0.57	>5.0e-9	0.93	0.58	0.30
cusp	>0.10	0.97	0.64	0.35	<1.00	0.93	0.44	0.24
ell	>0.70	0.95	0.72	0.43	< 0.80	0.86	0.69	0.37

Par		relaxed			
	L	C_r	\mathbf{P}_r	\mathbf{P}_{ext}	
c-w	>0.15	$<\!\!2.1e-\!2$	1.00	0.98	0.59
c - P30	>0.15	$<\!\!2.0e-7$	1.00	0.90	0.54
c - P40	>0.15	< 5.0e-8	<5.0e-8 0.97		0.54
c-ell	>0.15	> 0.70	0.95	0.92	0.60
$n_e - w$	>6.0e-3	<2.1e-2	0.97	0.88	0.55
$n_e - c$	>6.0e-3	> 0.15	0.97	0.84	0.49
P30-w	<1.0e-7	$<\!2.1\text{e-}2$	0.90	0.90	0.56
P30 - P40	<1.0e-7	< 5.0e-8	0.90	0.79	0.47
Par			disturbed		
	L	d	$C_d P_d P_{ex}$		
c-w	< 0.28	> 1.2 - 2	0.96	0.90	0.47
$n_e - w$	<3.1e-2	> 1.2-2	0.96	0.84	0.44
$n_e - c$	<2.0e-2	$<\!0.25$	0.93	0.62	0.33
c-ell	c-ell <0.25		0.93	0.62	0.33

combining centroid-shift and concentration provides complete and clean sample or relaxed clusters

Par		relaxed			
	L_r		C_r	\mathbf{P}_r	\mathbf{P}_{ext}
c-w	>0.15	$<\!\!2.1e-\!2$	1.00	0.98	0.59
c - P30	>0.15	$<\!\!2.0e-7$	1.00	0.90	0.54
c - P40	>0.15	< 5.0e-8	0.97	0.93	0.54
c-ell	>0.15	> 0.70	0.95	0.92	0.60
$n_e - w$	>6.0e-3	$<\!\!2.1e-\!2$	0.97	0.88	0.55
$n_e - c$	>6.0e-3	> 0.15	0.97	0.84	0.49
P30-w	<1.0e-7	$<\!2.1\text{e-}2$	0.90	0.90	0.56
P30 - P40	<1.0e-7	< 5.0e-8	0.90	0.79	0.47
Par			disturbed		
	L	d	C_d	\mathbf{P}_{ext}	
c-w	< 0.28	> 1.2-2	0.96	0.90	0.47
$n_e - w$	<3.1e-2	> 1.2-2	0.96	0.84	0.44
$n_e - c$	<2.0e-2	$<\!0.25$	0.93	0.62	0.33
c-ell	< 0.25	> 0.35	0.93	0.62	0.33

combining centroid-shift and concentration provides complete and clean sample or relaxed clusters

Total mass

The hierarchical structure formation model predicts massive clusters to form through episodic mergers statistically one might expect to find the most massive objects in a more disturbed dynamical state

Total mass

The hierarchical structure formation model predicts massive clusters to form through episodic mergers statistically one might expect to find the most massive objects in a more disturbed dynamical state

Total mass

Total mass

The hierarchical structure formation model predicts massive clusters to form through episodic mergers statistically one might expect to find the most massive objects in a more disturbed dynamical state

Total mass

The hierarchical structure formation model predicts massive clusters to

r=Spearman ρ=Pearson

	R_{500}				$0.5R_{500}$			
Relation	r	p-value	ho	p-value	r	p-value	ho	p-value
M ₅₀₀ -c	0.14	0.09	0.06	0.44	0.09	0.27	0.03	0.70
M ₅₀₀ -w	0.04	0.62	0.07	0.42	0.07	0.38	0.14	0.09
M_{500} - n_e	0.28	< 0.01	0.15	0.06	0.28	< 0.01	0.15	0.06
M_{500} -Gini	0.41	< 0.01	0.35	< 0.01	0.10	0.24	0.05	0.58
M_{500} -cusp	0.00	0.97	-0.05	0.59	0.00	0.97	-0.05	0.59
M_{500} -P30	-0.15	0.11	-0.06	0.48	0.10	0.25	-0.07	0.41
[₽] 0.4		[⊕] 0.4		0.4		[₽] 0.4		
0.2	-	0.2		0.2		0.2	2	
Ö.4 0.5 0.6 0.7 0.8 Gini		-10 -9 -8 lo	8 —7 —6 ba(P30)	-5 -10 -	9 -8 -7 log(P40)	-6 -5	0.0 0.5 cus	1.0 1.5 2.0 spiness

ESZ vs REXCESS

Why comparing SZ and X-ray selected samples?

CC and disturbed systems occupy distinct regions in the L-M plane (e.g. Pratt+09).

X-ray flux-limited surveys are thought to preferentially select relaxed, centrally peaked, galaxy clusters. Planck-selected clusters are thought to be in general more morphologically unrelaxed.

Recent studies:

Rossetti+16,+17 ; Andrade-Santos+17 found that X-ray selected samples tend to be more relaxed than Planck SZ selected clusters.

Nurgaliev+16 did not find significant differences in the observed morphology of X-ray and SPT SZ samples.

ESZ vs REXCESS

Why comparing SZ and X-ray selected samples?

CC and disturbed systems occupy distinct regions in the L-M plane (e.g. Pratt+09).

X-ray flux-limited surveys are thought to preferentially select relaxed, centrally peaked, galaxy clusters. Planck-selected clusters are thought to be in general more morphologically unrelaxed.

Recent studies:

Rossetti+16,+17; Andrade-Santos+17 found that X-ray selected samples tend to be more relaxed than Planck SZ selected clusters.

Nurgaliev+16 did not find significant differences in the observed morphology of X-ray and SPT SZ samples.

w, c, and a confirm that SZ clusters are more disturbed than X-ray clusters

ESZ vs REXCESS

ne probably affected by selection bias

to use n_e to compare SZ and X-ray sample one must assure they span a similar range of masses (and redshift)

- •Concentration and centroid-shift are the parameters that perform better in identifying relaxed systems.
- •Combining a parameter more sensitive to substructures (e.g. w, P30, and P40) with a parameters more sensitive to the core properties (e.g. n_e and c) is a powerful way to get complete and clean samples. Best combination *c*-*w*.
- •Identifying the most disturbed systems by using the morphological parameters is in general more difficult than identifying the most relaxed ones.
- •Apart from the central gas density and Gini coefficient, there is no dependence on the morphological parameters with M_{tot}.
- Samples of SZ selected clusters tend to be more dynamically disturbed than the X- ray selected samples in agreement with what has been found by other recent studies.