

Athena: mission concept, Study status, and optics development

Matteo Guainazzi (ESA/ESTEC)

With extensive contributions by M.Ayre, M.Bavdaz, D.Lumb, J.de Bruijne, (ESA/ESTEC), M.Ehle (ESA/ESAC), and the whole ESA Study Team

ESA UNCLASSIFIED - For Official Use

Gold standard for X-ray spectroscopy

μ-calorimeter spectrum of the Perseus Cluster (*Hitomi*/SXS)

Talks by Ohashi, Gu, Ichinoe, Nakashima, Noda Sato

Hitomi collaboration, 2016, Nature, 535, 117

The 2020's big observatories landscape

Athena is *the* contribution of the X-ray community to the new astrophysical frontiers of the 2020/30s

Courtesy of M.Türler (ISDC) and the Athena Science Study Team

A transformational mix of science performance

Barret et al., 2016, SPIE, 9905, 2; Nandra et al., 2013, arXiv:1306.2307

Outline

- Athena mission profile
- Athena Study status
- Athena optics development status

Outline

- Athena mission profile
- Athena Study status
- Athena optics development status

Athena mission profile

- Single telescope, Silicon Pore Optics (SPO)
 technology, 12 m focal length, 2 m² area (goal) @1 keV
- WFI (Active Pixel Sensor Si detector): wide-field (40'x40') spectral-imaging, CCD-like energy resolution (120-150 eV @6 keV) (A.Rau's talk)
- X-IFU (cryogenic imaging spectrometer): 2.5 eV energy resolution, 5'x5' field-of-view, ~5" pixel size (D.Barret's talk)
- Movable mirror assembly to switch between instruments in the focal plane
- Defocusing capability increases count rate dynamical range
- Metrology system to achieve a reconstructed astrometric error $\leq 1''$ (3 σ)
- Launch 2028, Ariane 6.4, L2 halo orbit (TBC)
- Nominal life-time 5 years + extensions
- End-of-Life disposal in deep space

Athena concept, ESA CDF

Athena key mission requirements

Parameter	Requirements
Effective Area	$2 \text{ m}^2 0 1 \text{ keV}$
	$0.25 \text{ m}^2 @ 6 \text{ keV}$
Angular Resolution	5" on-axis
	10" at 25' radius
Energy Range	$0.3\text{-}12~\mathrm{keV}$
Instrument Field of View	Wide-Field Imager: (WFI): 40'
	X-ray Integral Field Unit: (X-IFU): 5'
Spectral Resolution	WFI: $< 150 \mathrm{\ eV} \ @ \ 6 \mathrm{\ keV}$
	X-IFU: $2.5~\mathrm{eV}$ @ $6~\mathrm{keV}$
Count Rate Capability	> 1 Crab (WFI)
	10 mCrab, point source (X-IFU) 1 Crab (30% throughput)
TOO Response	4 hours with a 50% efficiency to observe a TOO source in a random sky position

Science Instrument Module (SIM) design as of December 2016

Adapted from Barret et al., 2013, SF2A-2013, 447

Athena Ground Segment

Leaend:

Mission Operations Centre

(MOC): ESA/ESOC

Science Operations Centre

(SOC): ESA/ESAC

Instrument Science Centres

(ICSs)

Share of tasks between SOC/ ICSs under discussion:

- Data processing <
- Telescope calibration, instrument cross-calibration < and inter-calibration

Ehle, 2016, ATHENA-SA-Dc-0001

Athena Target of Opportunity (ToO) capabilities

- 3 hours daily downlink to New Norcia + additional uplink stations for ToO (New Norcia, Malargüe)
- [ToO alerts isotropic and random assumed hereafter:]
- Working hours reaction (MOC/SOC): 09:00-17:00, Monday-Friday
- Out-of-working hours reaction (MOC/SOC): 2 hours commutes twice per day
 - SOC staff able to perform trigger evaluation at home
- Agile spacecraft (4°/minutes slew & settle)
- 10 minutes instrument swap if the "wrong" instrument is observing
- 40 hours X-IFU cooling cycle, with 32 hours cool time and 8 hours regeneration time (main constraints on the ToO trigger response time and ToO exposure time)

Outline

- Athena mission profile
- Athena Study status
- Athena optics development status

Athena overall schedule

Key date: adoption by the ESA Science Program Committee, 2020

Athena-related technological activities

TRL*≥5-6 before adoption

Key areas:

- Optics
- X-IFU
 Cryogenic
 Chain (CC)
- Background modeling
- Autonomous ToO

*Technical Readiness Level (scale 1-9: 5-6 is the level of "technology demonstration")

MCR+Delta (Δ) MCR-technical

Mission Consolidation Review (May 2016) + Delta MCR (February 2017)

Main **technical** conclusions:

- Mature mid-Phase A spacecraft design for all elements
- Mass constraint (7 tons) can be achieved with at most a minor reduction of the mirror diameter (corresponding to \sim 7% effective area @1 keV)
- High-load at the center of the mirror structure potential concern, but can be addressed with reliable technical solutions
- Complex SIM thermal control design, with high-level of dissipation (\sim 3 kW) and \sim no growth potential
- X-IFU thermal budget and instruments' mass budgets to be consolidated
- Launcher requirements still under definition (potential uncertainty)

$MCR + \Delta MCR - costs$

ESA Cost-at-Completion (CaC) cap: 1.05x10⁹€

- Cost estimates systematically exceed the CaC cap over the whole Phase A
- Envelope of international contributions (JAXA/NASA) defined, unlikely to change
- The problem must be addressed \leq autumn 2017. Among the possible options:
 - More "aggressive" industrial cost policy
 - Transfer of SIM-related activities/responsibility ESA → others
 - Saving in operation (MOC/SOC) costs
 - Optimization of international contributions and/or new partners
 - Mission performance: mirror diameter/number of modules, field-of-regard, nominal operational life
 - Shared effort of the ESA Study Team and the Athena Science Study Team

Outline

- Athena mission profile
- Athena Study status, and current activities
- Athena optics development status

Athena mirror: a gold standard

Key requirements:

- 1.4-2 m² area @1 keV
- 5" HEW on-axis
- Graceful degradation offaxis (<10" @20')
- Limited vignetting @1 keV

Silicon Pore Optics (SPOs)

Collon et al., 2016, SPIE, 9905, 28

ESA Study Team | XRU 2017, 8/6/2017 | Slide 18

Automated stacking

Stack

Mirror module

Testing

Mirror module ($\sim 10^3$ in the MAM)

SPO development priority activities

1. Improving the angular resolution

- Deposition of first and second plate
- Optimized die design for different radii
- Stacking recipe (pressure, duration)

2. Increasing production rates

- Mirror plate production automation
- Coating mass production
- Stacking time reduction

3. Environmental qualification

- Annealing of stacks
- Shock and vibration testing on stack level
- Qualification and acceptance criteria definition

Mandrel

Figure Cleanliness Non-adhesion

Metrology

Particles
Figure

12 m BESSY beamline
Panter Facility

Plates

Cleanliness Wedge quality Quantity Coating

Stacking

Alignment Stacking recipe Die figure

ESA Study Team | XRU 2017, 8/6/2017 | Slide 19

European Space Agency

HEW per column (entire pair of stacks in ~Wolter I configuration)

<HEW>:~22" in 2015 → 13.9" in 2016

60% of the optics have a HEW of 8"

Best performance: ~5"

Consistent results at Bessy (2.8 keV) and Panter (1.49 keV)

→ J.De Bruijne's poster on the MAM calibration

Collon et al., 2016, SPIE, 9905, 28

Summary

- Athena is the contribution of the X-ray community to 2020s astrophysics
- It will represent a ≥order-of-magnitude performance improvement (in several parameter spaces) with respect to any existing or approved X-ray missions
- Unique combination of effective area, energy/spatial resolution, and FoV
- The Phase A study has confirmed the technical feasibility, with a maturity level adequate to the current Study phase
- Need to optimize the mission profile/performance/international contributions to fit the CaC cap to be done *now*!
- Intense SPO optics development to: a) continue the current rate of performance improvement; b) achieve production rates and quality standards adequate for Flight Module production

