Investigating the origin of the X-ray emission from SN 1987A

Marco Miceli
Dipartimento di Fisica e Chimica, Università di Palermo
INAF – Osservatorio Astronomico di Palermo

Collaborators: S. Orlando, O. Petruk, C. Argiroffi, F. Bocchino
X-ray observations of SN 1987A

Continuous monitoring with X-ray observatories to follow the transition from a SN to a SNR thus providing a Rosetta stone for the link between these two phases of evolution.
X-ray observations of SN 1987A

Frank et al. 2016

X-ray lightcurves and high-resolution images reflect the complex interaction with the multi-phase circumstellar material characterized by

1. A tenuous \((10^2 \text{ cm}^{-3})\) HII region with harder X-ray thermal emission

2. A circumstellar dense \((10^3 \text{ cm}^{-3})\) equatorial ring with knots \((10^4 \text{ cm}^{-3})\) with softer emission

Miceli, M. – X-rays from SN1987A
X-ray spectra of SN 1987A

Evolution from an isothermal model to a model with three components (the coldest one in CIE) associated with

- The slow transmitted shock in the equatorial ring; $T_e \sim 0.3–0.5$ keV
- The fast forward shock in the HII region
- Plasma, reheated by a reflected shock from the ring; $T_e \sim 3$ keV

(e.g., Park et al. 2004, Haberl et al. 2006, Zhekov et al. 2010, Maggi et al. 2012, Helder et al. 2013)
Aims

Current models are *phenomenological* (*ad hoc* isothermal components) and analyze single observations, regardless of the whole succession of data sets (ignoring information embedded in the data).

We perform **3-D hydrodynamic simulations** to model the evolution of SN 1987a with a forward modeling approach.

This approach aims at understanding the physical origin of the emission and studying how the "initial conditions" (the SN physics) and the "boundary conditions" (the ambient medium) affect the evolution.
Initial conditions and parameter space

- Clumping of ejecta (Orlando+ 2012)
- Radiative losses from optically thin plasma
- Non-equilibrium of ionization
 - time evolution of each parcel of gas is followed (Dwarkadas+ 2010)
 - deviations from equilibrium of selected elements (O, Ne, Mg, Si) is calculated
- Tracers to follow the evolution of ejecta, HII region, and ring material

Spatial resolution
- Initial remnant radius ~ 20 AU (3e14 cm)
- Full spatial domain ~ 1 pc (3e18 cm)

18 nested levels of adaptive mesh refinement
effective resolution ~ 0.2 AU (3e12 cm)

> 100 cells per remnant radius during the whole evolution

\[
\begin{array}{ccc|cc|cc}
\text{HII reg.} & \text{range of values} & \text{best-fit values} \\
& \text{explored} & \\
\hline
n_{\text{HI}} & (10^2 \text{ cm}^{-3}) & 0.8 - 3 & 0.9 \\
r_{\text{HI}} & (\text{pc}) & 0.08 - 0.2 & 0.08 \\
\hline
n_{\text{rg}} & (10^2 \text{ cm}^{-3}) & 1 - 2 & 1 \\
r_{\text{rg}} & (\text{pc}) & 0.16 & 0.16 \\
w_{\text{rg}} & (10^{17} \text{ cm}) & 0.7 - 2 & 1.7 \\
h_{\text{rg}} & (10^{16} \text{ cm}) & 3.5 & 3.5 \\
\hline
< n_{\text{cl}} > & (10^4 \text{ cm}^{-3}) & 1 - 3 & 2.2 - 2.8 \\
< r_{\text{cl}} > & (\text{pc}) & 0.14 - 0.17 & 0.14 - 0.17 \\
w_{\text{cl}} & (10^{16} \text{ cm}) & 1 - 3 & 1.7 \\
N_{\text{cl}} & & 40 - 70 & 50 \\
\end{array}
\]
Our model

\[M_{rg} \sim 0.062 \, M_{\text{sun}} \]
\[\sim 0.040 \, M_{\text{sun}} \, @ \, n = 10^3 \, \text{cm}^{-3} \]
\[\sim 0.022 \, M_{\text{sun}} \, @ \, n \sim 2.5 \times 10^4 \, \text{cm}^{-3} \]

Density structure of ionized gas of the ring from optical spectroscopic data (Mattila+ 2010)

\[M_{rg} \sim 0.058 \, M_{\text{sun}} \]
\[\sim 0.046 \, M_{\text{sun}} \, @ \, n \sim 10^3 \, \text{cm}^{-3} \, \text{and} \, n \sim 3 \times 10^3 \, \text{cm}^{-3} \]
\[\sim 0.012 \, M_{\text{sun}} \, @ \, n \sim 3 \times 10^4 \, \text{cm}^{-3} \]

\sim 100\% \, \text{of the ring material has been shocked at the current time (2017)
Synthesis of the X-ray emission

By adopting ATOMDB V3.0, we derive the synthetic X-ray emission in each computational cell from

- Electron temperature (by including p⁺-e⁻ Coulomb collisions)
- Plasma density
- Time elapsed after the shock heating

The synthetic emission is then folded through the instrumental XMM-Newton and Chandra responses

Abundances: Zhekov+ (2009)
ISM Absorption: 2.35e21 cm⁻² (Park+ 2006)
Distance: 51.4 kpc (Panagia 1999)
Synthetic fluxes and images

(a) Bolometric

- HII region-dominated
- Ring-dominated
- Ejecta-dominated

(b) [0.5, 2.0] keV

- ROSAT
- ASCA
- CHANDRA
- XMM

(c) [3.0, 10] keV

Miceli, M. – X-rays from SN1987A
Both 2001 XMM EPIC data and the corresponding synthetic spectra can be fitted by an isothermal optically thin plasma in NEI with $kT = 1.7\pm0.4$ keV and $\tau = 2\pm1\times10^{10}$ s cm$^{-3}$
Though XMM EPIC spectra can be modelled by a single thermal component, the actual distribution of EM (T,τ) is quite complex.
Though XMM EPIC spectra can be modelled by a single thermal component, the actual distribution of EM (T,τ) is quite complex.
Both 2013 XMM EPIC data and the corresponding synthetic spectra can be fitted by 3 thermal components.

Same HD model fits the spectra at all epochs.
The 2013 spectrum is the result of an extremely complex distribution of temperatures and ionization parameters with different contributions from HII region, ring and ejecta.
The 2013 spectrum is the result of an extremely complex distribution of temperatures and ionization parameters with different contributions from HII region, ring and ejecta.
Synthetic X-ray spectra (2013)

Data: $EM_1=1.8\pm0.1$, $EM_2=2.0\pm0.1$, $EM_3=0.75\pm0.05$ (10^{59} cm$^{-3}$)

Model: $EM_1=0.95$, $EM_2=2.4$, $EM_3=1.1$ (10^{59} cm$^{-3}$)

Complex physical origin of the components
The isothermal components do *not* obviously reflect the actual physical conditions of the plasma.
The contribution of the ejecta will be dominant in a few years.
Conclusions

The wealth of X-ray observations of SN 1987A requires a thorough data analysis: **phenomenological models only analyze single observations**, regardless of the whole succession of data sets, and **the best-fit parameters do not necessarily describe the actual physical conditions**.

We investigate all the available (and future) data sets with a **unique hydrodynamic model** that accounts self-consistently for the single observations and for the evolution of the system.

The synthesis of observables from the HD simulations allows us to:

- Test the model
- Make quantitative predictions
- Get a deep physical insight on the origin of the observed emission
- Constrain the physical and chemical parameters of the X-ray emitting plasma (CSM and ejecta) with the high-res. spectroscopy
Acknowledgements

This work was partially funded by the PRIN INAF 2014 grant “Filling the gap between supernova explosions and their remnants through magnetohydrodynamic modeling and high performance computing.” The FLASH code is developed by the U.S. Department of Energy-supported Advanced Simulation and Computing/Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago (USA). The PLUTO code is developed at the Turin Astronomical Observatory in collaboration with the Department of Physics of Turin University. We acknowledge that part of the results of this research have been achieved using the PRACE Research Infrastructure resource MareNostrum III based in Spain at the Barcelona Supercomputing Center (PRACE Award N.2012060993) and part by using the PRACE Research Infrastructure resource Marconi based in Italy at the CINECA Supercomputing Center (PRACE Award N. 2016153460).