Monitoring of the peculiar X-ray binary pulsar SAX J0635.2+0533 N. La Palombara & S. Mereghetti INAF - IASF Milano

Fig. 1: long-term light curve of SAX J0635.2+0533 since MJD = 51400 (10 August 1999), with all the flux measurements (with different telescopes) obtained after the source discovery in 1997

Fig. 2: zoom into the observations of epochs A, C, D, and F, respectively; for a better comparison of the flux variability among the different epochs, the same scale for the time and flux axes is used

The X-ray emission of SAX J0635.2+0533

In the latest years similar quiescent luminosities have been observed in several Be X-ray binaries, and various emission mechanisms have been proposed to explain them (see e.g. Tsygankov et al. 2017a). In the case of SAX J0635.2+0533, the high and fast variability implies that the emission is due neither to the companion Be star nor to the cooling of the NS crust \downarrow

the source emission is most likely due to matter accretion

Very short pulse period P_{spin} = 33.8 ms ⇒ several constraints on the accretion regime:
no possibility of accretion from a cold recombined disc, regardless of the magnetic field (Tsygankov et al. 2017b)
very unlikely the subsonic accretion, even in the case of plasma radiative cooling (Shakura et al. 2013)

For a typical neutron-star magnetic field ($B = 10^{12}$ G) the low source luminosity can be explained only with a propeller regime, where the accreting matter is stopped by the centrifugal barrier at the magnetosphere

Comparison with other BeXRBs

In Fig. 3 we report the L_{max}/L_{min} ratio as a function of L_{max} , for several known BeXRBs:

- open circles (0) = transient MW sources (Tsygankov et al. 2017a)
- crosses (X) = SMC sources (Haberl & Sturm 2016)
- filled circles (•) = persistent, long-spin-period and low-luminosity BeXRBs (see e.g. La Palombara et al. 2012)
- star ($\stackrel{\wedge}{\bowtie}$) = short-period (P_{spin} = 69 ms) binary pulsar A0538-66 in the LMC (Skinner et al. 1982; Kretschmar et al. 2004)
- in both the MW and the MCs the source dynamic range increases with L_{max} , while the low-luminosity sources are also less variable
- lack of persistent high-luminosity sources (lower-right corner of the figure), due to the transient nature of the BeXRBs
- SAX J0635.2+0533 is clearly an outlier: it shows the largest dynamic range ($L_{max}/L_{min} \simeq 400$) among the less luminous sources

SAX J0635.2+0533 has rather peculiar properties, at variance with those of the typical accretion-powered BeXRBs

Fig. 3: X-ray luminosity ratio $L_{\text{max}}/L_{\text{min}}$ as a function of L_{max}

The X-ray Universe 2017

Rome (I)

6-9 June 2017

