

# High-resolution spectral analysis of transient pulsars in the SMC

#### N. La Palombara (IASF Milano) L. Sidoli, P. Esposito, S. Mereghetti, F. Pintore, A. Tiengo



The X-ray Universe 2017

Rome (I)

6-9 June 2017





### **Spectral properties of High Mass X-Ray Binaries**

X-ray spectrum between 0.1 and 10 keV:

- usually described with a rather flat power law
  (photon index Γ ~ 1) with an exponential cut-off
- often with Fe K $\alpha$  emission line

#### BUT

several XBPs have a marked data excess above the main power-law component







N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 June 2017

INAF



HMXRBs spectra

## **Spectral properties of High Mass X-Ray Binaries**

Hickox et al., 2004: the origin of the thermal excess depends on the source luminosity





#### **Spectral properties of High Mass X-Ray Binaries**

SMC X-1, LMC X-4, Cen X-3, RX J0059.2-7138, XTE J0111.2-7317

Vela X-1, AX J0103-722, RX J0101.3-7211

4U 1626-67, X Per

Her X-1, A0538-66, EXO 053109-6609.2

reprocessing of hard X-rays by the optically thick accretion material

emission by photoionized or collisionally heated gas or thermal emission from the accretion column

**I** < 1036 1

 $L_x \ge 10^{38} \text{ erg s}^{-1}$ :

 $L_{\rm X} \le 10^{36} \text{ erg s}^{-1}$ :

 $L_{\rm X} \sim 10^{37} \text{ erg s}^{-1}$ :

either or both the above processes are possible



N. La Palombara – IASF Milano

X-ray Universe 2017 - Rome - 08 June 2017





### **Spectral properties of High Mass X-Ray Binaries**

#### Hickox et al., 2004:

'a soft spectral component is a very common, if not ubiquitous,

feature intrinsic to accreting X-ray pulsars'

BUT

the debate about its origin remains open

Study of Galactic sources affected by the interstellar absorption in the Galactic plane  $\bigcup$  only in few cases it is possible to detect and investigate the soft excess



X-ray Universe 2017 – Rome – 08 June 2017



## **Transient BeXRBs in the SMC**

Ideal site to investigate the *soft* spectral component in the HMXRBs:

- Several (> 100) sources
- $L_X \sim 10^{38} \text{ erg s}^{-1}$  in outburst
- $N_{\rm H} < 10^{21} \, {\rm cm}^{-2}$

High count statistics at low energies

• Small uncertainties on the source distances  $\Rightarrow$  reliable estimate of  $L_X$ 

Program of ToO observations with XMM-Newton

## $\Downarrow$

- 4 sources observed in *outburst*:
- RX J0059.2-7138 (March 2014)  $\Rightarrow$  Sidoli et al. 2015, MNRAS 449, 3710
- SMC X-2 (October 2015)  $\Rightarrow$  La Palombara et al. 2016, MNRAS 458, L74
- IGR J01572-7259 (May 2016)  $\Rightarrow$  La Palombara et al., in preparation
- SXP 59 (April 2017)





INAF

#### RX J0059.2-7138

#### 1993:

- discovered with ROSAT, with  $L_X \sim 3x10^{38}$  erg s<sup>-1</sup> (Hughes 1994)
- pulse period of 2.76 s (pulsed fraction *PF* ~ 37 %) measured with ASCA (Kohno, Yokogawa & Koyama 2000)
- observation of a spectral soft component (Kohno, Yokogawa & Koyama 2000)

December 2013: first observation of an *outburst* since 1993, with  $L_X \sim 7x10^{37}$  erg s<sup>-1</sup> (ATel 5756, Krimm et al. 2014)  $\downarrow$ *XMM-Newton* observation (20 ks)



X-ray Universe 2017 - Rome - 08 June 2017



#### XMM-Newton observation of RX J0059.2-7138: timing analysis

2013:  $L_x \sim 7x10^{37}$  erg s<sup>-1</sup>, detection of pulsed emission also at E < 0.5 keV, *PF* ~ 9 %





N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 June 2017

INAF



INAF

## XMM-Newton observation of RX J0059.2-7138: EPIC spectrum

EPIC spectrum:

- Significant SE which dominates the PL emission at  $E\,{<}\,0.5~keV$
- $L_{SE} \sim 1.5$  % of  $L_{TOT}$  (~ 44 % in 1993)
- SE fit with either a BB ( $kT_{BB} = 93 \text{ eV}$ ,  $R_{BB} \sim 350 \text{ km}$ ) or a thermal plasma model (MEKAL:  $kT_{ME} = 210 \text{ eV}$ ,  $R_{ME} > 6x10^5 \text{ km}$ , A < 0.007)





N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 June 2017



#### XMM-Newton observation of RX J0059.2-7138: RGS spectrum

first detection of several absorption and emission lines due to N, O, Ne, and Fe



large residuals if continuum is described with a PL+MEKAL model



N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 June 2017



#### SMC X-2

- 1977: discovered with SAS3 ( $L_X = 8.4 \times 10^{37}$  erg s<sup>-1</sup>; Li, Jernigan & Clark 1977; Clark et al. 1978)
- 2000: second *outburst* observed with RXTE ( $L_X \sim 3x10^{37} \text{ erg s}^{-1}$ )
- $\Rightarrow P_{spin} = 2.37 \text{ s (Corbet et al. 2001)}$ 2011:
- OGLE: periodic variability of the optical counterpart

 $(P = 18.62 \pm 0.02 \text{ d}, \text{ Schurch et al. } 2011)$ 

• RXTE: periodic modulation of the pulse period

 $(P = 18.38 \pm 0.02 \text{ d}, \text{Townsend et al. 2011})$ 

September 2015: first observation of an outburst since 2000 (ATel 8088, Negoro

et al. 2015; ATel 8091, Kennea et al. 2015), with  $L_X \sim 10^{38} \text{ erg s}^{-1}$  (~  $L_{X, 1977}$ )







**SMC X-2** 

INAF

#### Swift observations of SMC X-2: timing analysis





N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 June 2017



## XMM-Newton observations of SMC X-2: timing analysis

#### XMM-Newton observation (30 ks):

- First detection of pulsed emission also at E < 0.5 keV
- Double-peaked pulse profile also at E < 0.5 keV at variance with what observed with ASCA
- Pulsed fraction = 30-40 % (as in 2000)







N. La Palombara – IASF Milano

X-ray Universe 2017 - Rome - 08 June 2017



## XMM-Newton observations of SMC X-2: EPIC spectrum

• First observation of the SE (2-6% of the total flux)BB Mg XI which dominates at E < 0.5 keV0.1 Au (mirrors) Counts RRC • SE fit with either a BB O/Ne/ Fe xxv 0.01  $(kT_{BB} \sim 130 \text{ eV}, R_{BB} \sim 320 \text{ km})$ (6.6 keV S or with emission from 20 collisionally ionized gas S nower-law (APEC,  $kT_{APEC} \sim 1.2 \text{ keV}$ ) 5 20 First detection of Fe emission best-fit model Ŷ line 0.5 10 Energy (keV)



N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 June 2017

SMC X-2

INAF



#### XMM-Newton observations of SMC X-2: RGS spectrum

first detection of several emission lines due to N, O, Ne, Si, and Fe

large residuals in the RGS spectrum if continuum is described with a PL+APEC model



**SMC X-2** 

INAF



N. La Palombara – IASF Milano

X-ray Universe 2017 - Rome - 08 June 2017



#### **Common properties of RX J0059.2-7138 and SMC X-2**

- Characteristics SE: BB model  $\Rightarrow$  kT<sub>BB</sub> ~ 0.1 keV, R<sub>BB</sub> ~ 300 km, L<sub>BB</sub>/L<sub>PL</sub> = 2-3 %
- Emission lines due to N, O, Ne, Si, and Fe, from matter with very different ionization levels ⇒ not compatible with a single-temperature plasma
- Large residuals in the RGS spectrum if continuum is described with a PL+MEKAL/APEC model
- SMC X-2: predominance of the forbidden line O VII (f) in the He-like O VII triplet
- High luminosity:  $L_X \sim 10^{38} \text{ erg s}^{-1}$
- $R_{repr} \sim 10^8 \text{ cm} \sim R_m$
- $L_X \sim 10^{38} \text{ erg s}^{-1} \Rightarrow PF \sim 30\text{--}40 \% \text{ (RX J0059 in 1993 and SMC X-2 in 2015)}$

## $\downarrow$

- soft excess: reprocessing of the primary emission by the <u>optically thick</u> inner edge of the accretion disc
- narrow lines: emission from <u>optically thin</u> photoionized circumsource matter







#### **IGR J01572-7259**

#### 2008:

- discovered with INTEGRAL in the Magellanic Bridge (Coe et al. 2008)
- follow-up observations performed with *Swift* and *RXTE* (McBride et al. 2010)

 $\Rightarrow P_{spin} = 11.578 \text{ s}$ , hard spectrum ( $\Gamma = 0.4$ ),  $L_X = 6.5 \text{ x} 10^{35} \text{ erg s}^{-1}$ 

2013:

- *Swift*/BAT: periodic modulation in the light curve ( $P = 35.6 \pm 0.5 d$ , Segreto et al. 2013)
- OGLE: periodic variability of the optical counterpart ( $P = 35.1 \pm 0.1 d$ , Schmidtke et al. 2013)

 $\Rightarrow$  orbital period

INAF

April 2016: detection of an outburst with Swift/BAT (ATel 9021, Krimm et al. 2016), with  $L_X = 4.1 \times 10^{37} \text{ erg s}^{-1}$ 

Trigger of a ToO observation with XMM-Newton (28 ks)

IJ





#### XMM-Newton observation of IGR J01572-7259: timing analysis

- First detection of pulsed emission also at low energies
- Significant energy dependence of the pulse profile
- Pulsed fraction increasing with E (~ 15 % @ E < 0.5 keV, ~ 45 % @ E > 1.5 keV)





N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 june 2017





#### XMM-Newton observation of IGR J01572-7259: EPIC spectrum

- First detection of a faint SE (2-5 % of the total flux)
- SE fit with either a BB ( $kT_{BB} \sim 220 \text{ eV}$ ,  $R_{BB} \sim 50 \text{ km}$ ) or with emission from collisionally ionized gas (APEC,  $kT_{APEC} \sim 1.1 \text{ keV}$ )
- First detection of O and Fe emission lines





N. La Palombara – IASF Milano

X-ray Universe 2017 – Rome – 08 june 2017





INAF

#### XMM-Newton observation of IGR J01572-7259: RGS spectrum

first detection of several emission lines due to N, O, Ne, Mg, and Fe





N. La Palombara – IASF Milano



#### **Origin of the** *soft excess* in IGR J01572-7259?

As in the case of RX J0059.2-7138 and SMC X-2:

- SE: BB model  $\Rightarrow$   $L_{BB}/L_{PL} = 2-3 \%$
- several narrow lines ⇒ large residuals in the RGS spectrum if continuum is described with a PL+APEC model

#### BUT

- no strong evidence for very different ionization levels
  ⇒ emission from a single-temperature plasma?
- intermediate luminosity ( $L_X \sim 3x10^{37} \text{ erg s}^{-1}$ )
- $R_{repr} \sim 3x10^7 \text{ cm} < R_m \sim 10^8 \text{ cm} < R_{cor} \sim 8.6x10^8 \text{ cm}$







IGR J01572-7259

INAF

#### **Origin of the** *soft excess* **in IGR J01572-7259**?

#### Evidence of a pulsating BB component:



BB due to reprocessing of the primary emission by the inner edge of the accretion disc





#### Conclusions

For the three observed sources:

- SE + narrow lines
- SE: BB with  $kT_{BB} = 0.1-0.2 \text{ keV}$ ,  $R_{BB} \sim 100 \text{ km} >> R_{NS}$ ,  $L_{BB}/L_{PL} = 2-3 \%$

reprocessing of the primary emission by <u>optically thick</u> material in the inner region of the accretion disc

• narrow lines due to N, O, Ne, Mg, Si, and Fe: large residuals in the RGS spectrum if continuum is described with a PL+MEKAL/APEC model

#### Ų

emission from optically thin photoionized circumsource matter







INAF

#### Conclusions

For the three observed sources:

- SE + narrow lines
- SE: BB with  $kT_{BB} = 0.1-0.2 \text{ keV}$ ,  $R_{BB} \sim 100 \text{ km} >> R_{NS}$ ,  $L_{BB}/L_{PL} = 2-3 \%$

reprocessing of the primary emission by <u>optically thick</u> material in the inner region of the accretion disc

• narrow lines due to N, O, Ne, Mg, Si, and Fe: large residuals in the RGS spectrum if continuum is described with a PL+MEKAL/APEC model

 $\downarrow$ 

emission from optically thin photoionized circumsource matter

## Thanks!

