Athena’s Constraints on the Dense Matter Equation of State from Quiescent Low-Mass X-ray Binaries

Sebastien Guillot
Pontificia Universidad Católica de Chile
Athena shall constrain the equation of state of neutron stars by obtaining X-ray spectra of quiescent low-mass X-ray binaries with a good distance estimate.
The internal structure of neutron stars is still unknown and many theories are proposed.

Weber et al. 2007
The internal structure of neutron stars is still unknown and many theories are proposed.

Lattimer and Prakash 2001

<table>
<thead>
<tr>
<th>Density (fm⁻³)</th>
<th>Pressure (MeV fm⁻³)</th>
<th>M₉₉ (M₆₉₃)</th>
<th>R₉₉ (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear density</td>
<td>WFF1, MS3, PCL2</td>
<td>WFF1, MS3, PCL2</td>
<td>WFF1, MS3, PCL2</td>
</tr>
<tr>
<td>Pressure (MeV fm⁻³)</td>
<td>WFF2, GM3, SQM1</td>
<td>WFF2, GM3, SQM1</td>
<td>WFF2, GM3, SQM1</td>
</tr>
<tr>
<td>M₉₉ (M₆₉₃)</td>
<td>WFF3, ENG, SQM2</td>
<td>WFF3, ENG, SQM2</td>
<td>WFF3, ENG, SQM2</td>
</tr>
<tr>
<td>R₉₉ (km)</td>
<td>AP4, PAL6, SQM3</td>
<td>AP4, PAL6, SQM3</td>
<td>AP4, PAL6, SQM3</td>
</tr>
</tbody>
</table>
Low-mass X-ray binaries experience high- and low- accretion states.
Low-mass X-ray binaries experience high- and low- accretion states.

\[F_X \sim 10^{-13} \text{ erg/sec/cm}^2 \]
Quiescent LMXBs inside globular clusters provide the observational solution.
Fitting the X-ray spectra of qLMXBs provides measurement of R_{NS} and M_{NS}.

Assuming non-magnetic Hydrogen atmosphere NS with uniform surface emission

$$R_{\infty} = R_{NS} (1 + z) = R_{NS} \left(1 - \frac{2GM_{NS}}{R_{NS} c^2}\right)^{-1/2}$$

Photon energy (keV)

Bogdanov et al. 2016
Guillot et al. 2011, 2013
Heinke et al. 2006, 2014
Özel et al. 2016
Webb & Barret 2007
For observations of qLMXBs, ATHENA’s capabilities will be critical.

- High throughput at soft X-ray energies
- High time resolution
- Low background
- Good angular resolution

Barret et al. 2016
For observations of qLMXBs, ATHENA’s capabilities will be critical.

- High throughput at soft X-ray energies
- High time resolution (X-IFU or WFI fast chip)
- Low background
- Good angular resolution

Bogdanov et al. 2008

![Graph showing counts per bin vs rotational phase](image)
For observations of qLMXBs, ATHENA’s capabilities will be critical.

- High throughput at soft X-ray energies
- High time resolution (X-IFU or WFI fast chip)
- Low background
- Good angular resolution

Rau et al.
For observations of qLMXBs, ATHENA’s capabilities will be critical.

- High throughput at soft X-ray energies
- High time resolution (X-IFU or WFI fast chip)
- Low background
- Good angular resolution

Chandra XMM ATHENA
About 500 ks of qLMXBs observations with ATHENA will place constraints on the EoS.

<table>
<thead>
<tr>
<th>Host Globular Cluster</th>
<th>qLMXB Flux (erg/cm(^2)/sec)</th>
<th>Dist. (kpc)</th>
<th>Exposure time (ksec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>47 Tuc</td>
<td>(5 \times 10^{-13})</td>
<td>4.6</td>
<td>10</td>
</tr>
<tr>
<td>NGC 6397</td>
<td>(9 \times 10^{-14})</td>
<td>2.2</td>
<td>35</td>
</tr>
<tr>
<td>NGC 362</td>
<td>(8 \times 10^{-14})</td>
<td>8.6</td>
<td>50</td>
</tr>
<tr>
<td>M13</td>
<td>(5 \times 10^{-14})</td>
<td>7.1</td>
<td>65</td>
</tr>
<tr>
<td>OmCen</td>
<td>(5 \times 10^{-14})</td>
<td>4.6</td>
<td>75</td>
</tr>
<tr>
<td>M80</td>
<td>(3 \times 10^{-14})</td>
<td>10.0</td>
<td>95</td>
</tr>
<tr>
<td>NGC 6304</td>
<td>(5 \times 10^{-14})</td>
<td>6.2</td>
<td>115</td>
</tr>
</tbody>
</table>

Combined analysis of 7 qLMXBs with exposure times sufficient to get 50000 counts for each source

\[
\frac{\Delta R_{NS}}{R_{NS}} \bigg|_{1.4 \ M_\odot} = \pm 1.7\%
\]

Polytropic parameterization of the EOS

TOTAL: 450 ksec
Some current limitations will be resolved by X-ray and multi-wavelengths observations.

- **Neutron star atmosphere**
 Identifying the lightest element in the system

- **$M_{NS} - R_{NS}$ degeneracy**
 Measuring M_{NS} independently

- **Distance precision**
 Be patient and wait for GAIA’s results

- **Presence of a hot-spot**
 Looking for pulsations, or evidence for two-Temperature spectrum
High Signal-to-Noise X-ray spectra can exclude the presence of a hot-spot.

Simulated neutron star surface with hot spot, but fitted with single temperature model

120 eV surface with 150 eV hot-spot

$T_{\text{surf}} = 120\text{ eV with } T_{\text{spot}} = 150\text{ eV}$

120 eV surface with 180 eV hot-spot

$T_{\text{surf}} = 120\text{ eV with } T_{\text{spot}} = 180\text{ eV}$

See Elshamouty et al. (2016) for bias on R_{NS} caused by hot spots
Summary

• Quiescent LMXBs offer one of the robust method to constrain the equation of state

• ATHENA can provide high S/N observations of qLMXBs to constrain the equation of state with high precision

• Synergy with other observatories will limit the effect of systematic uncertainties.

• We could probably use more than 500 ks
Combining observations into a statistical analysis provides more useful constraints.

See also the works of:
Steiner et al. (2013)
Lattimer & Steiner (2014)
Baillot d’Etivaux et al. (in prep.)