Survival of the obscuring torus in the most powerful active galactic nuclei

Silvia Mateos

Thanks to: **F.J. Carrera, X. Barcons, A. Alonso-Herrero**, A. Hernán-Caballero, A. Blain, A. Caccianiga, T. Miyaji, R. Della Ceca, A. Asensio-Ramos, C. Ramos-Almeida

Instituto de Física de Cantabria

Big question: What is the intrinsic fraction of luminous type-2 AGN?

Most AGN searches find that the obscured AGN fraction

decreases with increasing luminosity

(e.g. Hasinger+08; Della Ceca+08; Ebrero+09; Lusso+13; Merloni+14;

Ueda+14; Buchner+15)

Receding torus models (Lawrence+91): *The covering factor of the torus decreases with increasing AGN luminosity*

Results not free from controversy: Reyes+08; Lawrence+10; Mayo+13; Sazonov+15; Georges+16; Mateos+16; Netzer+16; Stalevski+16

Luminosity dependence of the intrinsic fraction of type-2 AGN

Novel technique

We used the **geometrical** covering factors of AGN tori to determine the intrinsic **type-2** AGN fraction *f*₂: covering factor of the AGN dusty torus

f₂ == true type-2 AGN fraction

AGN sample

The Bright Ultra-hard XMM-Newton Survey (BUXS; Mateos+12)

- Complete flux-limited sample: *f*_{4.5-10 keV} > 6x10⁻¹⁴ erg cm⁻² s⁻¹
- >98% spectroscopic identification rate
 162 type 1 AGN (+Sy1.8-1.9); 90 type 2 AGN
- We know f₂ for 99% of objects
- Good quality X-ray spectra for all sources

robust estimates of $L_{2-10 \text{ keV}}$

199 AGN with: 0.05<z<1 $L_{2-10 \text{ keV}}$: 10⁴²-10⁴⁵ erg s⁻¹

Isolating the torus emission (Mateos+15)

UV-to-mid-IR SEDs (SDSS, 2MASS, UKIDSS, WISE) corrected for contamination from AGN hosts and accretion disk emission

SED fitting with BayesCLUMPY (Mateos+16)

Nenkova+08 radiative transfer torus models

Bayesian inference tool: BayesCLUMPY (Asensio Ramos & Ramos Almeida +09, +12)

Observed type-2 AGN fraction vs. f_2

Number of objects missed in X-rays

The AGN missed are all type-2 AGN

Highly absorbed + Compton-thick

• Stacked f_2 distribution for highly absorbed type-2 AGN in BUXS represents well that of the objects missed in X-rays $\sum 2 + N = E$

Number of objects missed in X-rays

The majority of luminous type-2 AGN reside in highly obscured nuclear environments but most of them have escaped detection

Comparison with receding torus models

When the "missing" objects are included, the luminosity dependence of the type-2 AGN fraction disappears

Compton-thick AGN fraction

Compton-thick AGN account at most for 37% of the total population

Comparison with >10 keV AGN surveys

Our finding are consistent with first results from the NuSTAR serendipitous survey (Lansbury+17)

Summary

- We reveal a population of X-ray undetected type-2 AGN with high-covering factor tori
 - These are increasingly numerous at higher luminosities
- When these "missing" objects are included, the luminosity dependency of the obscured AGN fraction disappears
 - Clear disagreement with predictions from receding torus models
 - The intrinsic obscured AGN fraction is ~58%
 - Compton-thick AGN account at most for 37% of the total population

The majority of rapidly-accreting SMBH reside in highly obscured nuclear environments but most of them remain elusive to contemporary <10 keV wide-area X-ray surveys