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Accretion on Black Holes:

Testing the Lamp Post Geometry
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Accretion Geometry: The Primary Source of Radiation

Lamp Post Corona

steep emissivity emissivity ∝ r−3
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Accretion Geometry: The Primary Source of Radiation

Lamp Post Corona

steep emissivity emissivity ∝ r−3

Usually emissivities steeper than r−3 are observed (described by a broken
power law emissivity) (see, e.g., Fabian et al., 2004; Miller et al., 2013)

⇒ naturally explained in the lamp post geometry
⇒ agrees with measurements of the emissivity (see, e.g., Wilkins & Fabian, 2012;

Wilkins & Gallo, 2015)
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How can we test the nature of the primary source?

• analyze the continuum: usually continuum produced by a corona or a jet
fits equally well to data (see, e.g., Nowak et al., 2011)

• measure the emissivity profile (see, e.g., Wilkins & Fabian, 2012)

• timing / reverberation lags ... (see, e.g., Kara et al., 2016)

• compare a full model of primary and reflected radiation to data
(including normalization)
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Reflection Fraction in the Lamp Post Geometry
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lamp post geometry: fraction of photons / flux hitting the disk compared
to infinity depends on the height source
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reflection fraction (Rf) =
Flux(Accretion Disk)
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Different ways to define the reflected normalization

Reflection Fraction Rf

Ratio between intensity illuminating
the disk to intensity reaching the

observer

System Intrinsic

Reflection Strength Rs

Ratio between reflected and direct flux
at the Compton hump (20–40 keV)

Observed Strength

Motivation: in order to investigate the accretion geometry, need
to understand how much primary radiation is incident on the
accretion disk
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Relativistic Reflection: Predicted Reflection Fraction

reflection spectra: source at height h seen under inclination θ
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• strong dependency of reflection on inclination angle
• large boost in reflection fraction possible for low heights
• largest boost for large angle and low height source

Thomas Dauser – Remeis Observatory Bamberg & ECAP 6



Observed Spectrum: Reflection Strength

Rs (reflection strength)

Rf (reflection fraction)
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• strength (Rs) strongly depends on the inclination
• greatest strength for large inclination angles

→ only high reflection fraction for low height and large spin
→ prediction: some sources should show strong reflection
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Sample Study: Testing the Lamp Post Geometry
Fink at al., in prep (Poster J10)

Aim: Constraining the height of the primary source for a sample of
sources ⇒ does the lamp post geometry describe the data?

• use 16 of the sources with best spectral coverage (XMM-Newton and
NuSTAR)
• show that the physical model is able to describe the data
• constrain the height of the primary source
• does the predicted reflection fraction agree with measurements?
• compare with previous measurements
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Sample Study: Height vs. Reflection Fraction
Fink at al., in prep (Poster J10)

self-consistent
normalization results in
equally good fits

more physically sound results and better constraints
(reflection fraction strongly depends on inclination and height)
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Sample Study: Height vs. Reflection Fraction
Fink at al., in prep (Poster J10)
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Sample Study: Spin Measurements (preliminary)
Fink at al., in prep (Poster J10)

Walton (2013)
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⇒ spin measurements largely in good agreement
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The Primary Source: Cutoff Energy

• determines energetics of corona→ compactness (Fabian et al., 2015, . . . )

• García et al. (2015a): cutoff energy important for relativistic reflection
• energy shifted due to GR effects

600 keV

Ecut = 300 keV

300 keV400 keV
900 keV

300 keV

current limitations of reflection modeling:
one input spectral shape for the complete disk

problem: convolution of multiple zones of the accretion
disk necessary, but computationally very expensive
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relxill 2.0 : overcoming this limitation

fully re-written relxill model with a FFT algorithm for the convolu-
tion and additional optimizations faster despite multiple zones

Ecut
1 Ecut

2 Ecut
3 Ecut

4

reflection spectrum for each
zone relativistically smeared
separately

download: www.sternwarte.uni-erlangen.de/research/relxill/
(other models unchanged, but faster: including nthcomp, coronal geometry, line models...)
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Multi-Zone Model: Change in Cutoff Energy

500

200

50

1000

100

400300200150805030

0.5

0

E
c
u
t
(fi

tt
e
d
)
[k
e
V
]

Ecut [keV]

R
a
ti
o

• 10 ksec NuSTAR
simulations of GX-339 (García

et al., 2015b)

• simulate with multi-zone
model and fit with the
previously used 1-zone
model
• model is combination of
xillver and relxill

previously cutoff energy
≈10% over-predicted

other parameters (e.g.,
spin) largely unaffected
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Multi-Zone Model: Are other parameters affected?
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Summary

• reflection fraction contains information about the primary source
• reflection strength (measured normalization) depends on height,

inclination, ...
• sample study: self-consistent reflection fraction leads to physically

consistent results
→ lamp post geometry describes data well
• new relxill model: multiply radial zones for a proper modeling of the

reflection (cutoff energy)
→ only changes around 10% in the cutoff energy

Spin measurements: only reliable with a sound under-
standing/constraint of the system geometry?
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