

X-ray synchrotron filaments in Cas A: the radio connection

V. Domček¹, J. Vink¹, M. Arias¹, P. Zhou¹

¹University of Amsterdam, Contact: V.Domcek@uva.nl

ANTON PANNEKOEK **INSTITUTE**

Supernova remnants (SNRs) are thought to be the dominant sources of Galactic cosmic rays (Helder+ 2012) Identification of radio synchrotron emission from electrons with energies of a few GeV was the first evidence of that

Part of the X-ray emission from young SNRs is synchrotron produced by electrons with energies of $10^{13} - 10^{14} \text{ eV}$

Presence of these electrons is very revealing about where and how fast the electrons are accelerated.

Radio VLA, 4.72 GHz ($\sim 10^{9}$ Hz)

Mid-Infrared Spitzer, 4.5 μ m (~10¹³Hz)

X-rays Chandra, 4.2-6.2 keV ($\sim 10^{18}$ Hz)

What do we look for?

We investigate narrow regions of the SNR associated with the forward shock and X-ray synchrotron radiation to find out:

whether the overall spectrum remains a power-law in the frequency range $10^8 - 10^{18}$ Hz.

Combined color image

what is the shape of the power-law cut-off

Why do we care?

- Accelerated particles influence the shock itself, resulting in curved spectra (Malkov & Drury 2001)
- The cut-off shape can be indicative of what limits the maximum energy lacksquareand the role of magnetic field fluctuations (Zirakashvili & Aharonian 07, Yamazaki+ 2014)

Highlighted regions are filaments associated with X-ray synchrotron radiation

Our approach?

We extract fluxes in the filament regions and model the SED as power-law with an exponential cut-off

$$\ln(F_{\nu}) = -\alpha \ln(\nu) - \left(\frac{\nu}{\nu_c}\right)^{\rho} + K$$

Preliminary conclusions

- X-ray flux doesn't surpass the radio extrapolated power-law thus additional non-linear component with this data is not needed
- Cut-off parameter differs from the standardly used value $\beta = 0.5$
- We currently look into the mid-infrared and Nustar data to investigate the possible curvature of the spectra further

Our SED analysis of the chosen extraction regions

References

Helder et al. (2012), Space Science Reviews, 173, 369, Malkov & Drury (2001), Report on Progress in Physics, 64, 429 Zirakashvili & Aharonian (2007), Astronomy & Astrophysics, 465, 695 Yamazaki et al. (2014), Research in Astronomy and Astrophysics, 14, 165-178