

RGS CALIBRATION STATUS

ROSARIO GONZÁLEZ-RIESTRA

XMM-NEWTON SCIENCE OPERATIONS CENTRE

ON BEHALF OF THE SRON AND ESAC RGS TEAMS

Outline

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

Operations

✓ RGS operations are running smoothly

 \checkmark No changes in operational configuration

✓ No anomalies

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

RGS1 node D

RGS 1 System peak central value Node D

Revolution

RGS1 node C RGS 1 System peak central value Node C 150 E Central -Cent Revolution

Offsets

Instrument Status	Operations
	Offsets
	СТЕ
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

CTE

Relative Charge Transfer Efficiency

C. de Vries

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

Bad Surface

Columns found hot in > 95% of the observations

XMM-SOC-CAL-TN-0217 C.Gabriel

Bad Surface

100 1.8 RGS 1 RGS 2 90 1.6 80 70 60 50 40 30 20 < 2% of detector surface 1.4 1.2 1 0.8 0.6 0.4 0.2 10 0 0 $20^{0}20^{1}20^{1}20^{1}20^{0}20^{0}20^{0}20^{0}20^{0}20^{0}20^{0}20^{0}20^{0}20^{0}20^{1}20^{$ XMM-SOC-CAL-TN-0217 C.Gabriel

Columns found hot in > 25% of the observations

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

Calibration files released since last Meeting

CCF	Release Note	Purpose	Date
RGS[12]_EFFAREACORR_0012	349	Extrapolation of the correction to the RGS Effective Area beyond revolution 2816	June 2017
RGS1_HKPARMINT_0016 RGS2_HKPARMINT_0015	350	Increase in the RGA Temperature limits in revolutions 3249 and 3250	September 2017

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

Instrument Status	Operations	
	Offsets	
	CTE	
	Bad Surface	
Calibration	New CCFs	
	Wavelength Scale	
	Contamination	
	Effective Area	

Instrument Status	Operations
	Offsets
	CTE
	Bad Surface
Calibration	New CCFs
	Wavelength Scale
	Contamination
	Effective Area

Decrease in the flux of the Isolated Neutron Star RXJ1856-3754

=> Current model underestimates the contamination

esa

Year

2012

2014

2016

RGS1 [RGS2] flux 0.33-0.5 keV, from fluxed spectra

3000

RGS1 □ RGS2 △

3500

2000

Revolution

2500

2010

2008

1500

2004

4.5×10⁻¹²

4.0×10⁻¹²

3.5×10⁻¹²

1.1

1.0

0.9

0.8E

2006

scaled pn flux 0.15-1.5 keV

R1 flux 0.33-0.5 keV R2 flux 0.33-0.5 keV

Ratio RGS/PN

1000

Effective Area

The flux of the ISN RXJ1856 has decreased in the last years

- The source is not variable
- The observed changes cannot be explained with (only) an increase in the thickness of the C_8H_8 contamination layer

Work in progress to confirm the change in effective area and quantify it

- Detailed analysis of selected targets: RXJ1856, Vela Pulsar, compact SNRs (1ES0102, N132D)
- Comparison with EPIC-pn data for BL Lacs (aka "Rectification Factors")
- Comparison with Chandra/LETG
- Evaluation of instrumental factors (detectors, optics...)

Preliminary results: RXJ1856-3754, comparison with LETG

esa

Preliminary results: Time-dependent rectification factors

Flux Ratio RGS / EPIC-pn for a sample of BL Lacs

Summary and Conclusions

- ✓ RGS operations are running smoothly
- ✓ Instruments do not show any unexpected degradation
- ✓ Wavelength scale is stable. Accuracy is \approx 5 mÅ
- ✓ There are indications of a decrease in Effective Area; the reason is not understood yet
- ✓ Work in progress to quantify this effect and determine its origin

ESA UNCLASSIFIED - For Official Use	Rosario Gonzalez-Riestra	17/05/2018 Slide 26
_ II ≥ :: = + II = ≝ = II II = = = # = 0 II = := II ₩	😑 I+I	European Space Agency