

Challenges of coordination and possible solutions

Jan-Uwe Ness¹, Aitor Ibarra, Celia Sanchez Erik Kuulkers, Peter Kretschmar Jesus Salgado, Emilio Salazar Matthias Ehle, Carlos Gabriel <u>1juness@sciops.esa.int</u>

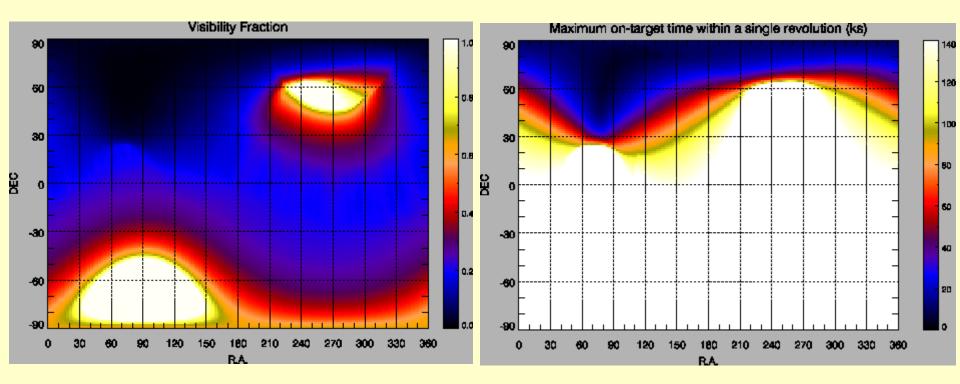
European Space Astronomy Centre (ESAC) Villafranca del Castillo, Spain

European Space Agency

Constraints (examples)

- No observations while passing through radiation belts
- Orientation of space craft to sun
- Large avoidance angles around Sun and anti-Sun, Moon, Earth, Bright planets
- No slewing over Moon and Earth (planets ok)
- Availability of ground stations
- No commanding during ground-station handovers
- Down times during maintenance

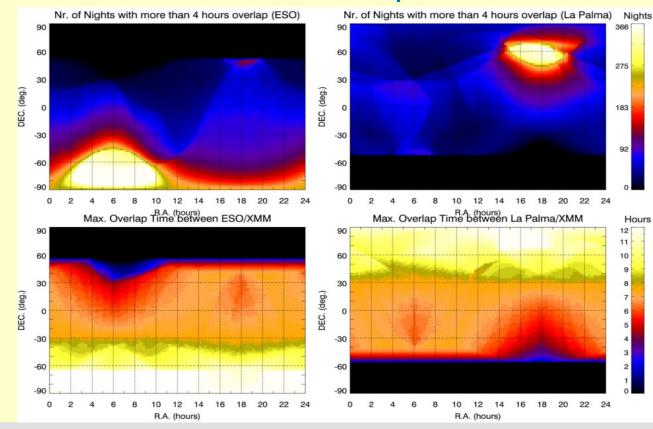
Some constraints only known a short time in advance => Flexibility with long-term planning


Space-specific constraints in bold red

Slide 2

European Space Agency

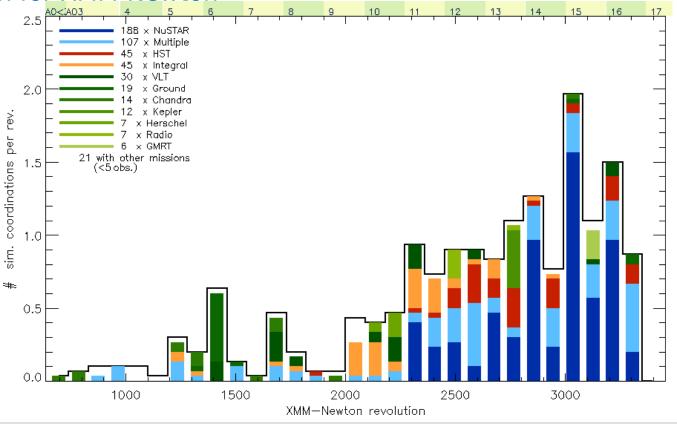
Observing Constraints XMM-Newton


Slide 3

European Space Agency

|+|

Observing Constraints XMM-Newton plus others

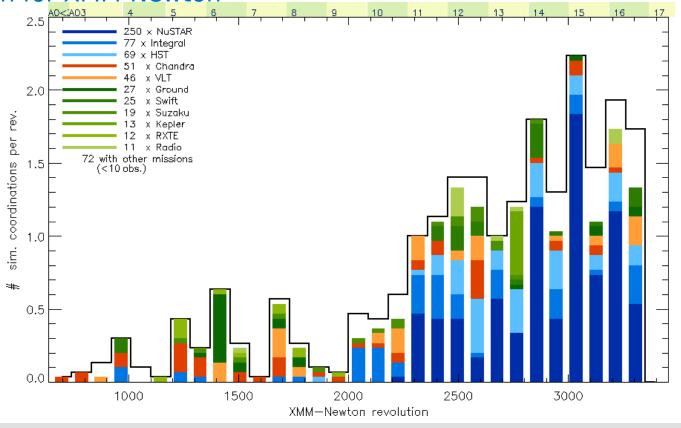


Slide 4

European Space Agency

Increasing Demand for Coordinated observations Evolution for XMM-Newton

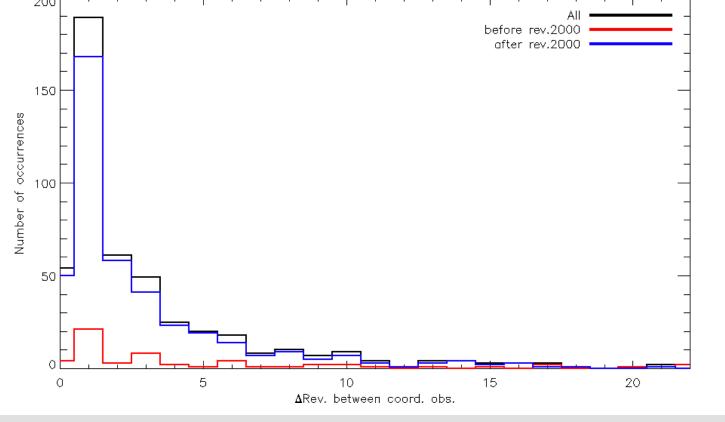
esa


Slide 5

European Space Agency

|+|

Increasing Demand for Coordinated observations Evolution for XMM-Newton



Slide 6

European Space Agency

|+|

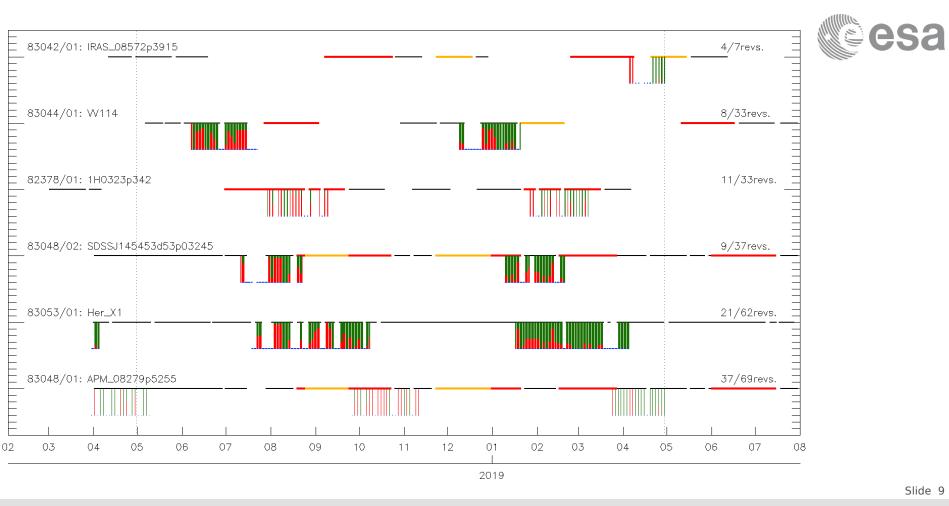
Increasing Demand for Coordinated observations

|+|

₩

Slide 7

Coordination with other observatories



Strategies:

Before planning coordinated observations, need to have all "own" time-critical observations planned
Important to keep record of margins for later steps
Determine constraint-free observing slots of own facility
Present available slots to other facilities and determine overlap
Some agreements may contain the more flexible observatories to follow the scheduling of the less flexible ones

Thus, manoeuvre around own constraints and other constraints:

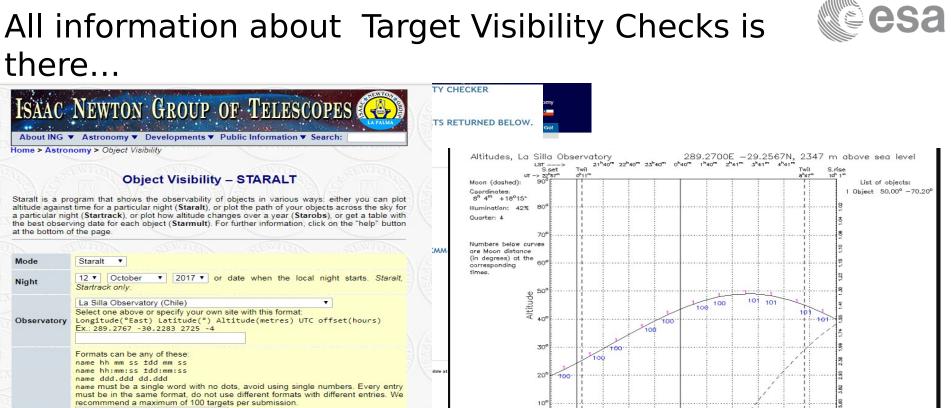
- Visibility hard constraints
- Observing Plan soft constraints depending on priorities

× Ш +

Slide 9

European Space Agency

1+1


All information needed to plan an observation (via AO or ToO) is currently in facilities own web pages.

This information is usually shown in a web page statically and is only accessible trough forms that have to be manually filled in.

Slide 10

UT -: 23

75000

75000 75000

75000

24

0.92

0.92

0.93

Mean Solar Zone Time, starting night 12 10 2017 Processed: 2017/19/12 at 10:21:34 UT, leage, Newton Group of Telescopes, La Palma,

77.3

78.8

80.4

82.0

171

23

21 22

0.47

0.47

0.47

0.47

Coordinates	50.0 -70.2				Vis
RA & dec: 5	23 34.5, -69 45 22, epoch 2000.0	Rev.	(yyyy-mm-dd hh:mm)	Duration (s)	(yyyy-mm
	1 36.8 (h.m.s) West, -24 37 30 North	3397	2018-06-28 02:58	27036	2018-06-28 10:29
	te, moon phase, hr ang and sec.z at	3398	2018-06-29 12:49	78126	2018-06-30 10:31
	of night, and (3) morning twilight; t	3399	2018-07-01 12:42	78063	2018-07-02 10:23
nighttime hours dur:	ing which object is at sec.z less tha	3400	2018-07-03 12:35	77939	2018-07-04 10:14
Night (and twilight)	is defined by sun altitude < -18.0	3401	2018-07-05 12:29	77804	2018-07-06 10:06
Date (eve) moon	eve cent morn	3402	2018-07-07 12:22	77715	2018-07-08 09:58
	HA sec.z HA sec.z HA se	3403	2018-07-09 12:15	78302	2018-07-10 10:00
	52 3.1 -2 45 1.6 +1 21	3404	2018-07-11 12:07	78348	2018-07-12 09:53

Slide 11

69.5

68.5

67.4

66.3

And information about scheduled observation...

ALM

Chandr

	cience Prop		bserving	Data Pr	ocessing	Tools	B Docu	mentatio	on Help						Sear	rch Site	og in	Comme
LMA Status P Weather Cond	-																	
Current Date	Current Ti	me	Location	1		Hur	nidity	Tem	perature	De	wpoint	Wind Direction		Wind Speed	l)	Pressure		
2017/10/12	11:08:37	UTC	Central	Weather Statio	n	23.	60 %	-4.8	3 ° C	-22	2.52 ° C	307.00 °		5.10 m/s		553.78 hPA		
Recent observ Project		Source			PI				Public ol Project		Source				PI			
Magnetic field stru	cture in the bipola	ar outflow dr	iven by Oric	on Source I					Protolunar	disks arour	id directly imag	ed young exoplanets					_	
2017.1.00497.S		Orion_Sou	rce_I		Hirota, Tor	noya			2015.1.01	210.S	PZ_tel				Perez	z, Sebastian		
ALCHEMI: the ALM	A Comprehensive	High-resolu	tion Extraga	alactic Molecular	Inventory				From Dark	to Light: S	tar Clusters in F	ormation						
2017.1.00161.L		ngc253			Martin, Se	rgio			2015.1.01	308.S	Serpens_	Main_and_Serpens_S	South		Mund	dy, Lee		
100,000 Molecular	Clouds Across th	e Main Sequ	ence: GMCs	as the Drivers	of Galaxy E	volution						A: Poloidally-domina	ated Mag	netic Field vs.	Toroidal	y-dominated		
2017.1.00886.L		NGC7496			Schinnerer	, Eva		-	-		nnermost Jet							
	eru.euu/ciiesei/uisperc	10081.00							2015 1 00	421 5	Cen A				Naga	i Hiroshi		н
Chandra								S	earch Resu	ults							The state	
X-ray Cen	er New Search														Search Re	esults Retrieval List Help	Chandra Data Ar	
View Observation Informa	ion						A	dd Products to	Retrieval List	Primary package Secondary package Custom selection								CHIVE
	Obs ID Instrument	• Grating • A	opr Exp • Expo	sure	PI Name	RA + De	c • Status	Data Mode	Exp Mode O Av	g Cnt Rate + Evt	Cnt Start Date	Public Release Date Pr	roposal • Typ	e	Prop Cycle \$	Science Category	Joint	Grid Nat
1 703152	17566 HRC-S		35.0				6 26.20 archived						708488 DD		15	ACTIVE GALAXIES AND QUAS		
2 703152 3 703277	17567 HRC-S 18345 ACIS-S	LETG	45.0	44.46 ASASSN-14li 23.84 ASASSN-14li			6 26.20 archived 6 26.50 archived		TE	68.49	3044836 2014-12-11 08:4 32575 2016-01-28 14:3	5:20 2014-12-12 05:20:16 15 9:01 2017-01-29 08:31:06 17	708488 DD 700613 GO		15	ACTIVE GALAXIES AND QUAS ACTIVE GALAXIES AND QUAS		
4 703278	18346 ACIS-S		60.0	58.47 ASASSN-14li			6 26.50 archived	-	TE	2.15	125536 2016-08-03 13:0		700613 GO		17	ACTIVE GALAXIES AND QUAS		
5 703279	18347 ACIS-S		15.0	14.67 ASASSN-14li			6 26.50 observed		TE	2.08	30482 2017-08-03 18:3		700613 GO		17	ACTIVE GALAXIES AND QUAS		
6 703279	20127 ACIS-S 20128 ACIS-S		25.0				6 26.50 observed		TE	2.09			700613 GO		17	ACTIVE GALAXIES AND QUAS		
7 703279				39.01 ASASSN-14li	Maksym 12	48 15.20 +17 4		VFAINT	TE	2.10	81754 2017-08-05 14:1	6:16 2018-08-06 16:01:08 17	700613 GO	18	17	ACTIVE GALAXIES AND OUAS		2 <u> </u>

ObsTap as existing standard

... Core components of the Observation data model that are necessary to perform data discovery when querying data centres for astronomical observations of interest ...

Extend this standard to be used for visibility check and scheduled observation info

obs_id	unitless	String	Observation ID	OBS_ID
obs_publisher_did	unitless	String	Dataset identifier given by the publisher	?
access_url	unitless	String	URL used to access (download) dataset	TBD
access_format	unitless	String	File content format (see in App. Error! Reference source not found.)	NULL
access_estsize	kbyte	integer	Estimated size of dataset in kilo bytes	NULL
target_name	unitless	String	Astronomical object observed, if any	"Target" ?
s_ra	deg	double	Central right ascension, ICRS	RA
s_dec	deg	double	Central declination, ICRS	DEC
s_fov	deg	double	Diameter (bounds) of the covered region	Fixed value for each XMM- Newton Instrument
s_region	unitless	String	Sky region covered by the data product (expressed in ICRS frame)	TBD, not easy for RGS
1	1	1	1	1

International Virtual

> Observatory Alliance

Observation Data Model Core Components and its Implementation in the Table Access Protocol

Slide 13

The XMM-Newton & Integral: Visibility

XMM-Newton

http://xmm.esac.esa.int/XMMVisCheck? startDate=11-10-2017& minduration=12.000& coordinates=equatorial& ra=192.063458& dec=17.77394

INTEGRAL

http://integral.esac.esa.int//IntegralVisCheck? startDate=11-10-2017& minduration=12.000& coordinates=equatorial& ra=192.063458& dec=17.77394

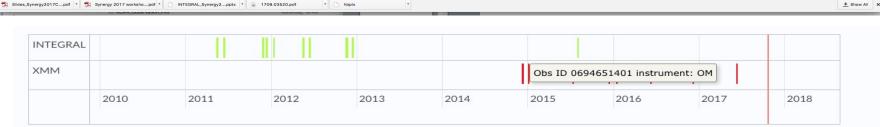
🗧 🔶 🏽 🗅 xmm.esac.esa.int/XMMVisCheck?ra=321&dec=34&minDuration=5000&startdate=20-Dec-2017&enddate=20-Dec-2018&coordinates=equatorial

[("SolarA': #9.3", "Rev': 13293", "Vis5tar': 2017-12-01 10:19", "AstroA': 231.2", "Vis5nd': 2017-12-03 01:12", "StarPh': 0.12", "Round': 130000", "Vis1Dur': 139962", "EndPh': 0.93"), ["SolarA': #6.57", "Rev': 3295", "Vis5tar': 2017-12-05 10:11", "AstroA': 239.7", "Vis5nd': 2017-12-05 00:54", "StarPh': 0.12", "Round': 130000", "VisDur': 139318", "EndPh': 0.93"), ["SolarA': #6.51.", "Rev': 3295", "Vis5tar': 2017-12-05 10:15", "AstroA': 238.7", "Vis5nd': 2017-12-07 00:45", "StarPh': 0.12", "Round': 130000", "VisDur': 139318", "EndPh': 0.93"), ["SolarA': #6.51.", "Rev': 3295", "Vis5tar': 2017-12-07 09:59", "AstroA': 236.8", "Vis5nd': 2017-12-07 00:45", "StarPh': 0.12", "Round': 130000", "VisDur': 139318", "EndPh': 0.93"), ["SolarA': #63.7", "Rev': 3297", "Vis5tar': 2017-12-09 09:53", "AstroA': 236.8", "Vis5nd': 2017-12-10 00:39", "StarPh': 0.12", "Round': 130000", "VisDur': 139364", "EndPh': 0.93"), ["SolarA': #63.3", "Rev': 3299", "Vis5tar': 2017-12-13 09:39", "AstroA': 233.8", "Vis5nd': 2017-12-13 00:12", "StarPh': 0.12", "Round': 130000", "VisDur': 138364", "EndPh': 0.92"), ["SolarA': #60.9", "Rev': 3329", "Vis5tar': 2017-12-13 09:39", "AstroA': 233.8", "Vis5nd': 2017-12-15 00:12", "StarPh': 0.12", "Round': 130000", "VisDur': 138278", "EndPh': 0.92"), ["SolarA': 78.1", "Rev': 3300", "Vis5tar': 2017-12-13 09:39", "AstroA': 230.7", "Vis5nd': 2017-12-15 00:12", "StarPh': 0.12", "Round': 130000", "VisDur': 138278", "EndPh': 0.92"), ["SolarA': 78.1", "Rev': 3301", "Vis5tar': 2017-12-17 09:13", "AstroA': 220.7", "Vis5nd': 2017-12-16 23:47", "StarPh': 0.12", "Round': 130000", "VisDur': 138278", "EndPh': 0.92"), ["SolarA': 76.7", "Rev': 3302", "Vis5tar': 2017-12-10 09:17", "AstroA': 227.7", "Vis5nd': 2017-12-20 23:47", "StarPh': 0.12", "Round': 130000", "VisDur': 138228", "EndPh': 0.92"), ["SolarA': 75.4", "Rev': 3303", "Vis5tar': 2017-12-21 09:17", "AstroA': 222.7", "Vis5nd': 2017-12-22 23:21", "StarPh': 0.12", "Round': 130000", "VisDur': 138228", "EndPh': 0.92"), ["SolarA': 77.4", "Rev': 3303", "Vis5tar': 2017-12

Slide 14

The XMM-Newton & Integral: Observation Info

XMM-Newton


http://xmm.esac.esa.int/XMMVisCheck? coordinates=equatorial& ra=192.063458& dec=17.77394

C xmm.esac.esa.int/XMM_ObsTap?ra=184.584&dec=47.13125

INTEGRAL

http://integral.esac.esa.int//IntegralVisCheck? **coordinates**=equatorial& **ra**=192.063458& **dec**=17.77394

{"44":{"s_fov":"N/A","decl":"47.303972222200002","target_name":"NGC 4258", 'obs publisher did': "N/A", 'obs collection': "N/A", 'instrument': '9", 'access format': "N/A", 's xell': 'N/A", 'em xel': 'N/A", 'ataproduct type": 'N/A", 's xel2:: 'N/ 21:23:55", "filter_number": '1", 'exposure_id': '400", 't_xel': "N/A", 's_region": "N/A", 'ren res_power': "N/A", 'ral': '12.3159722221999999", "access_url": "N/A", 't_resolution": 'N/A", 'facility_name": "N/A", 'access_estaize": "N/A", 'observation_id": "05914090 1,"s_realution':N/A,"mode_number':19,"dataproduct_subtype':Y/A,"exp_ad_tise":202-05-22 202002", target_name':NGC 425",Obs_number':19,"A,"pol_states':N/A,",A,"sol_stor':N/A,",adel':47.30392222200002", target_name':NGC 425",Obs_number':19,"A,",adel':A,"A,"soled_tor':N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor':N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor:N/A,"soled_tor':N/A,"soled_tor:N/A,"soled_tor' 21/28/19","filter number:"0", "exposure id":"5","t.x0',"N/A,"s_region":"N/A,"en regione:"N/A,"entropy "Access ut1',"N/A,"t_resolution":"N/A,"forestation_id":"0059140901" "s_resolution":"N/A,"mode number:"1","dataproduct.subtype:"N/A,"entropy "N/A,"entropy "N/A,"pol.x0';"s_resolution":"N/A,"forestation_id":"0059140901" 21:29:22", "filter number": "4", "exposure id": "6", 't_xel": "N/A", "s region": "N/A", "em_res_power": "N/A", "ral": "12.315972222199999", "access url": "N/A", "t_resolution": "N/A", "facility name": "N/A", "pol_xel": "N/A", "access estsize": "N/A", "conservation id": "0059140901" , "=resolution": "N/A", "mode_number": 12", "dataproduct_subtype": "N/A", "exp_end_time": "2002-05-23 00:15:06", "calib_type": "N/A", "en_min": "N/A", "pol_states": "N/A", "40; {"s_fov": "N/A", "dec1": "47.303972222200002", "target_name": "NGC", "and the state sta 4258", "obs_publisher_did": "N/A", "obs_collection": "N/A", "instrument": "4", "access_format": "N/A", "s_xel1": "N/A", "em_xel1": "N/A", "dataproduct_type": "N/A", "s_xel2": "N/A", "c_ucd": "N/A", "sched_duration": "15922", "exp_start_time": "2002-05-22 21:34:39", filter number":"2", "exposure_id":"2", "t_xel":"N/A", "s_region":"N/A", "em res_power":"N/A", "ral":"12.315972222199999", "access_url":"N/A"," t_resolution":"N/A", "facility_name":"N/A", "pol_xel":"N/A", "access_estsize":"N/A", "observation_id":"0059140901" ,"s_resolution":"N/A", "mode_number":"0","dataproduct_subtype":"N/A", "exp_end_time":"2002-05-23 02:03:01","calib_type":"N/A", "em_min":"N/A", "pol_states":"N/A","4;"s_fov":"N/A","dec1":"47.303972222200002","target_name":"NGC 4258", "obs publisher did": "N/A", "obs collection": "N/A", "instrument": "3", "access format": "N/A", "s xel1": "N/A", "em xel": "N/A", "dataproduct type": "N/A", "s xel2": "N/A", "o ucd": "N/A", "sched duration": "15922", "exp start time": "2002-05-22 21:34:39", "filter number":"2", "exposure id':"1", 't_xel": N/A", "s_region": N/A", "em_res_power": N/A", "ral": 12.315972222199999", Taccess url": "N/A", "t_resolution": "N/A", "facility name": "N/A", "pol_xel": "N/A", "access estsize": "N/A", "observation_id": "0059140901" ,"s resolution":"N/A","mode number":"0","dataproduct subtype":"N/A","exp end time":"2002-05-23 02:03:01","calib type":"N/A","em min":"N/A","pol states":"N/A","50":{"s fov":"N/A","dec1":"47.303972222200002","target name":"NGC 4255", 'obs publisher did': 'N/A', 'obs collection': 'N/A', 'instrument': '5', 'access format': 'N/A', 's well': 'N/A', 's well': 'N/A', 'dataproduct type': 'N/A', 's wel2': 'N/A', 'o ucd': 'N/A', 'sched duration': '13646', 'exp start time': 2002-05-22 220817; "http://www.in/source.in/sou ,"s resolution":"N/A", "mode_number":"0","dataproduct_subtype":"N/A","exp_end_time":"2002-05-23 02:03:33","calib_type":"N/A", "em_min":"N/A","pol_states":"N/A","51":{"s_fov":"N/A","dec1":"47.303972222200002","target_name":"NGC 425%; 'obs_publisher_did': 'NA', 'obs_collection': 'NA', 'anistument': '9, 'access_format': 'NA', 'ang_max': 'NA', 'ang_kel': 'NA', 'anistoroduct_type': 'NA', 'acity, ,"s_resolution":"N/A","mode_number":"12","dataproduct_subtype":"N/A","exp_end_time":"2002-05-23 02:03:34","calib_type":"N/A","em_min":"N/A","pol_states":"N/A","s2":

Slide 15

Europe

Summary

- Increasing demand for multi-mission coordinations
- Challenges:
 - Diverse formats of hard constraints (visibility)
 - => Needed to find common slots (Can observe?) Diverse formats of observing plans (Will observe?)
 - => Needed to find common slots with lowest scientific impact
- Solutions:

Standard of visibility and observing information

=> machine readable, interface with optimization routines
 (clients)

Slide 16

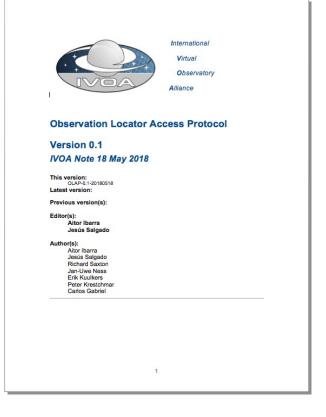
l 🏼 🕹

International Virtual Observatory Alliance

Object Visibility Access Protocol

Version 0.1 IVOA Note 18 May 2018

This version: OVAP-0.1-20180518 Latest version:


Previous version(s):

Editor(s): Aitor Ibarra Richard Saxton Jesús Salgado

Author(s): Aitor Ibarra Jesús Salgado Richard Saston, Jan-Uwe Ness, Erik Kuulkers Peter Krestchmar, Carlos Gabriel

OVAP IVOA Note

1

OLAP IVOA Note

Slide 17

· _ II > :: = + II = :: _ II II _ = :: = :: + II = !! + !! = !!

- 1. Simple Access Protocol
- Easy to implement for the different observatories
- 3. Already available in a non-standard way in many cases
- 4. Based on "parameter=value" approach
- 5. VOTable response
- 6. Analyzed to be done as a TAP protocol but it was not so easy to implement

-	International Virtual	
	Observatory	
	Alliance	
Object Visibility Acco	ess Protocol	
Version 0.1		
IVOA Note 18 May 2018	1	
This version: OVAP-0.1-20180518 Latest version:		
Previous version(s):		
Editor(s): Aitor Ibarra Richard <u>Saxton</u> Jesús Salgado		
Author(s): Aitor Ibarra		
Jesús Salgado Richard Saston, Jandawe Ness, Erik Kuulkos Peter Kusakbowar, Carlos Gabriel		
		-

+

If interested to collaborate, contact any of us!

Jan-Uwe Ness¹, Aitor Ibarra, Celia Sanchez Erik Kuulkers, Peter Kretschmar Jesus Salgado, Emilio Salazar Matthias Ehle, Carlos Gabriel <u>1juness@sciops.esa.int</u>

European Space Astronomy Centre (ESAC) Villafranca del Castillo, Spain

Slide 19