TDE past, present and future

Richard Saxton, S. Komossa, Andy Read, Kate Alexander, Paulina Lira, Iain Steele, Pedro Rodriguez, Cristian Motch, Miguel Descalzo

Overview

Rees 1988 Ulmer 1999

Bonnerot et al. 2015

ROSAT TDE

Komossa 2012

Rosat discovered several *quiescent* galaxies with soft X-ray flux variations > 100. Light curve decay roughly compatible with $t^{-5/3}$. Dropping by factors of 1000s in some cases.

RXJ 1242.6-1119 Komossa & Greiner 1999

RXJ 1420.4+5534 Greiner+ 2000

RXJ 1624.9+7554 Grupe, Thomas & Leighly 1999

NGC 5905

Bade, Komossa & Dahlem 1996;

Many TDE waiting to be discovered in RASS

RXJ 0759 – galaxy with soft X-ray spectrum and large variability in RASS and subsequent obs.

RBS 1032

Maksym, Lin & Irwin 2014 Khabibullin & Sazonov2014

Real-time TDE discovery: XMM slew survey

TDE: X-ray spectra

3XMM J 152130.7+074916, Lin et al. 2015

X-ray spectra are generally very soft

TDE: X-ray spectra

NGC 4845 – Nikolajok & Walter 2013

 $\Gamma=2$, kT=87 eV - Saxton et al. 2017

But may be a bias towards detecting soft TDE in current surveys.

TDE with harder spectra do exist.

Real-time TDE discovery: optical surveys

PS1-10jh Gezari et al. 2012

Only X-ray upper limits

iPTF16fnl

 $kT\sim 2x10^4 K$

Real-time TDE discovery: optical surveys

See Open TDE catalogue – https://tde.space

Table of X, UV, O TDE flares (non-relativistic)

- Are X-ray and optical TDE the same phenomenon ?
- Different aspects of same phenomenon, observational bias?
- Different animals ?

Unified TDE model

Reprocessing models Strubbe&Murray 2011 Guillochon+ 2014 Metzger&Stone 2016 Roth+ 2016

All TDE are same.

Characteristics due to viewing angle.

Predictions:

- Some X-ray TDE with high absorption

- X-rays visible when debris screen clears

Dai et al. 2018

ASASSN-150i

First and only evidence for a delayed X-ray "flare" from a TDE

 L_{χ} =10⁴² (high-state) L_{χ} =10⁴¹ (low-state)

Holoien et al. 2018

ASASSN-15oi – X-ray spectra

Low-state

kT=47eV + Plaw

Gezari et al. 2017

Little spectral evolution ??

Higher-state

kT=42eV + Plaw

Jerusalem Bagel model

Piran et al. 2015

No accretion disk, optical/UV radiation generated by shocks. X-rays by subsequent accretion.

Pasham et al. 2017

Predicts a delay between UV/opt flare and X-ray flare

ASASSN-14li – UV/X delay?

Pasham et al. 2017

~30 day delay lag of X with respect to UV

Future prospects - ideal

Need good coverage of X-ray and optical LCs.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

IDEAL:

Weekly coverage of large sky area in X-ray and optical bands

Deep, high spectral resolution X-ray and UV observations to measure absorbers.

Future prospects – next year

eRosita + ASASSN or ZTF

Weekly coverage of large sky area in optical band, 6-monthly returns in X-rays RGS if bright enough and soft enough. HST for UV?

Future prospects - 2023

Weekly (daily) coverage of large sky area in X-ray and optical bands RGS if bright enough and soft enough. WSOUV for UV?

Future prospects - WSOUV

R=55000 D=1.7m Launch slated for 2023 Russian-Spanish mission

Long-term lightcurve server : HILIGT - input

Long-term lightcurve server : HILIGT - output

UPPER LIMIT SERVER RESULTS

ADVANCED SETTINGS

XMM-NE	wton slew		115.034185.6575						
Observation Date	Count rate 0.2 - 2	Count rate 2 - 12	Count rate 0.2 - 12	Exp. time(s)	Flux 0.2 - 2	Flux 2 - 12	Flux 0.2 - 12		
2012/08/21 18:13:14	<0.7624	<1.3971	<1.2935	4.7811	<1.0947e-12	<1.2775e-11	<4.0863e-12		
2014/03/24 06:05:21	<1.8313	<2.9561	<2.9183	1.9903	<2.6297e-12	<2.7031e-11	<9.2189e-12		
2014/04/01 20:42:53	4.2512 ± 0.6330	0.7832 ± 0.2960	5.2278 ± 0.7355	10.7037	(6.1047 ± 0.9090) e-12	(7.1623 ± 2.7071) e-12	(1.6514 ± 0.2324) e-11		
2015/01/12 05:54:47	<0.6102	<1.3111	<1.3224	10.0212	<8.7621e-13	<1.1988e-11	<4.1776e-12		
XMM-NEWTON POINTED									
Observation Date	Count rate 0.2 - 2	Count rate 2 - 12	Count rate 0.2 - 12	Exp. time(s)	Flux 0.2 - 2	Flux 2 - 12	Flux 0.2 - 12		
2014/04/29 19:24:29	0.5911 ± 0.0136	0.0662 ± 0.0046	0.6573 ± 0.0143	3917	(8.4876 ± 0.1950) e-13	(6.0624 ± 0.4270) e-13	(2.0766 ± 0.0454) e-12		
2014/04/30 06:00:00	0.4546 ± 0.0062	0.0442 ± 0.0020	0.4988 ± 0.0065	14466	(6.5276 ± 0.0893) e-13	(4.0444 ± 0.1852) e-13	(1.5757 ± 0.0207) e-12		
2014/04/30 10:33:11	0.3729 ± 0.0047	0.0362 ± 0.0015	0.4091 ± 0.0049	28281	(5.3552 ± 0.0678) e-13	(3.3113 ± 0.1402) e-13	(1.2924 ± 0.0157) e-12		
2015/01/11 18:44:30	0.2357 ± 0.0049	0.0279 ± 0.0017	0.2636 ± 0.0052	35259	(3.3843 ± 0.0701) e-13	(2.5593 ± 0.1644) e-13	(8.3293 ± 0.1643) e-13		

INTEGRAL

Observation Date	Count rate 20 - 40	Count rate 40 - 60	Count rate 60 - 100	Exp. time(s)	Flux 20 - 40	Flux 40 - 60	Flux 60 - 100
2003/08/07 02:45:23	<0.1950	<0.2440	<0.1940	66000.0	<3.5958e-12	<3.1476e-12	<3.1505e-12

<u>.</u>

(?)

HILIGT – example light curve

Summary

- Currently, optical surveys + Swift can analyse optical TDE.
- XMM slew + monitoring for X-ray TDE
- Next year: eRosita + ASASSN/PanSTaRRS... can attack X-ray TDE in large numbers
- 2023: EP + LSST + WSOUV can find X-ray and optical TDE *at peak* in large numbers. First good chance to solve the X/opt exclusivity problem unless we get lucky beforehand.
- 2031: Athena can follow-up TDE with high sensitivity and high spectral resolution.
 HILIGT: a web-based client for a set of X-ray flux and upper limit servers