

XMM-Newton Optical & UV Monitor (OM) Calibration

Simon Rosen ESAC Users Group Meeting May, 2019

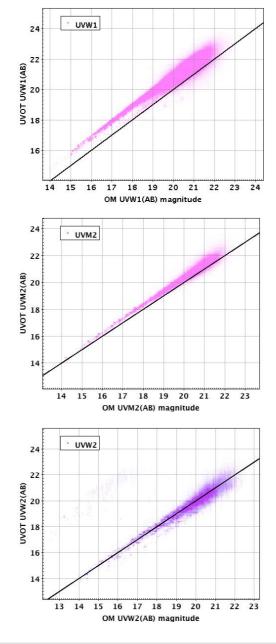
 $\mathbf{*}$

European Space Agency

Outline

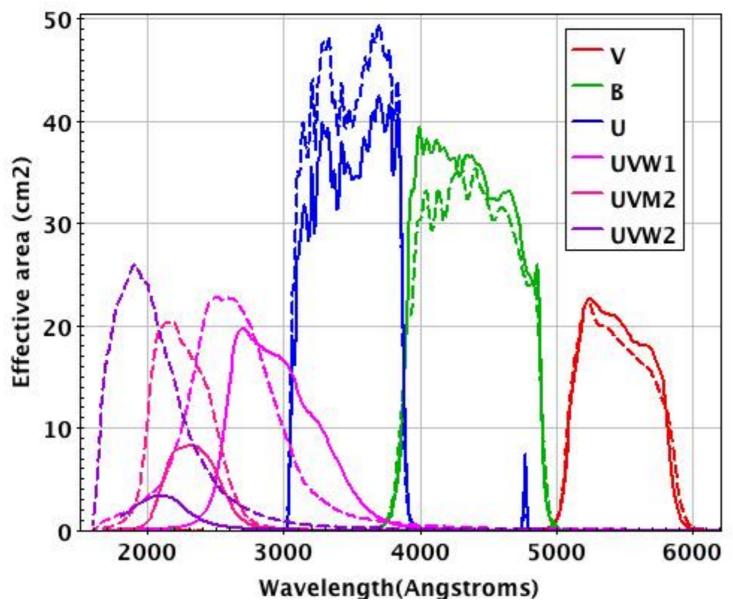
- OM SUSS4 catalogue
- Time-dependent sensitivity degradation monitoring
- Jupiter depletion patch monitoring
- Time-dependent boresight update
- Calibration forward look




Release of Serendipitous UV Source Survey V4.1 ("the OM Catalogue")

- Version 4: SUSS4.1, released in December 2018 (available via XMM XSA)
- All public observations up to July 2017
- Full reprocessing with SAS 17:
 - photometry of sources detected in mosaic and stacked images
 - inclusion of time-dependent sensitivity corrections
- 8.18x10⁶ detections of 5.5x10⁶ unique sources, from 9749 XMM-Newton pointings
- 4.45x10⁶ detections with UV data (3.05x10⁶ unique sources)
- Source variability from multiple pointings (1.04x10⁶ sources observed > once)
- 82% of cleanest, point-like OM sources have a match in GAIA DR2 catalogue
 - 98% of those are within 2", median offset 0.45"

Comparison of XMM OM and Swift UVOT photometry – good agreement



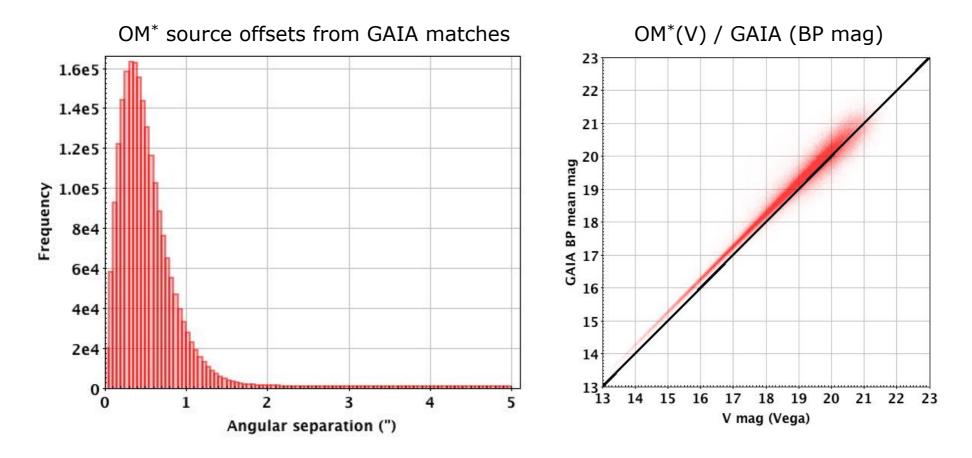
- OM v UVOT (AB mag)
- Generally good agreement
 almost OM=UVOT

(see also data from A. Breeveld in Yershov, V.N., 2014, Astr. & Space Science, 354, 97.)

- UVW1 notable different
 - double pronged
 - due to rather different filter profile
- Other filter differences similar cause

Comparison of XMM OM and Swift UVOT photometry – good agreement

OM (solid) UVOT (dashed)


esa

ESA UNCLASSIFIED - For Official Use

Z II ≥ 32 = + II = ⊆ Z II II Z Z # = 0 II Z IZ # = 10

OM-GAIA comparisons

* Clean, point like OM sources

ESA UNCLASSIFIED - For Official Use

= II 🛌 :: = + II = 🔚 = 2 II II = = 2 :: = 0 II = 1 = 1 💥 🛀 |||

XMM OM filter data in SVO filter service

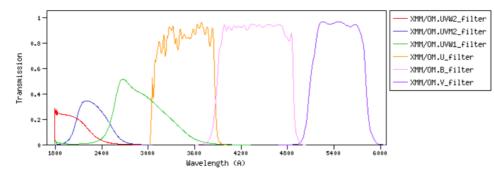
	esa
--	-----

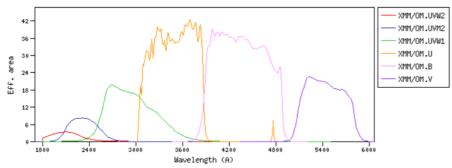
	VO Service Browse Search News Help-Desk AuthId: Passw:						
CTIO DENIS	Euclid	GAIA	GALEX	GCPD	Gemini		
INT IRAS	ISO	IUE	JWST	Keck	Kepler		
McD Misc	МКО	MMT	MSX	NAOC	NIRT		
Paranal SAO	Scorpio	SkyMapper	SLOAN	SOFIA	Special		
TNG TNO	ТҮСНО	UKIRT	VATT	WFIRST	WHT		
IN M	NT IRAS CD Misc aranal SAO	NT IRAS ISO CD Misc MKO aranal SAO Scorpio	NT IRAS ISO IUE cD Misc MKO MMT aranal SAO Scorpio SkyMapper	NT IRAS ISO IUE JWST cD Misc MKO MMT MSX aranal SAO Scorpio SkyMapper SLOAN	NT IRAS ISO IUE JWST Keck cD Misc MKO MMT MSX NAOC aranal SAO Scorpio SkyMapper SLOAN SOFIA		

http://svo2.cab.inta-csic.es/theory/fps/

ESA UNCLASSIFIED - For Official Use

XMM OM filter data in SVO filter service




XMM filters:

Filter ID	λ _{mean}	λ _{eff}	λ _{min}	λ _{max}	W _{eff}	ZP (Jy)	Obs. Facility	Instrument	Description	
XMM/OM.UVW2_filter	2066.6	2042.1	1790	2892	435.5	738.9	ХММ	ОМ	XMM OM UVW2 filter transmission only	
XMM/OM.UVW2	2175.3	2144.9	1800	3246	498.3	766.3	ХММ	OM	XMM OM UVW2 filter full effective area	
XMM/OM.UVM2_filter	2303.8	2283.8	1821	2919	461.9	773.9	ХММ	OM	XMM OM UVM2 filter transmission only	
XMM/OM.UVM2	2347.2	2327.6	1884	2994	478.1	781.1	ХММ	OM	XMM OM UVM2 filter full effective area	
XMM/OM.UVW1_filter	2947.4	2934.3	1795	4034	744.0	1044.8	ХММ	OM	XMM OM UVW1 filter transmission only	
XMM/OM.UVW1	2978.8	2971.0	2189	4060	795.3	1065.0	ХММ	OM	XMM OM UVW1 filter full effective area	
XMM/OM.U_filter	3488.8	3515.7	3022	3948	675.1	1480.5	ХММ	OM	XMM OM U filter transmission only	
XMM/OM.U	3503.2	3534.6	3020	4782	651.1	1506.0	ХММ	OM	XMM OM U filter full effective area	
XMM/OM.B	4365.4	4332.4	3719	4964	926.4	4056.7	ХММ	OM	XMM OM B filter full effective area	
XMM/OM.B_filter	4397.8	4361.9	3729	4969	910.2	4055.0	ХММ	OM	XMM OM B filter transmission only	
XMM/OM.V	5437.6	5412.1	4932	5963	666.4	3637.3	ХММ	ОМ	XMM OM V filter full effective area	
XMM/OM.V_filter	5463.4	5437.8	4943	5977	699.6	3620.7	ХММ	OM	XMM OM V filter transmission only	

Filter Plots (using a common λ range)

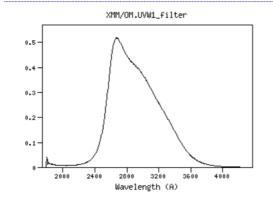
(Plot them zoomed to their own λ range)

ESA UNCLASSIFIED - For Official Use

= II 🛌 == + II = 🔚 = 🔚 = II II = = = 🖬 🛶 💷 II = = 🖬 🖬 🗰 🙌

8 European Space Agency

XMM OM filter data in SVO filter service



XMM/OM.UVW1_filter

Filter Description	on
Filter ID (?) :	XMM/OM.UVW1_filter
Description (?) :	XMM OM UVW1 filter transmission only
Phot.System (?) :	хмм
Detector Type (?) :	Photon counter
Band Name (?) :	UVW1
Obs. Facility (?) :	хмм
Instrument (?) :	ОМ
Comments (?) :	

Mathema	tical prop	erties	
Property	Calculated	Specified	Unit
λ_{mean} (?) :	2947.35		(Angstrom)
λ_{cen} (?) :	2914.67		(Angstrom)
λ _{eff} (?) :	2934.34		(Angstrom)
λ_{peak} (?) :	2680.00		(Angstrom)
λ_{pivot} (?) :	2895.37		(Angstrom)
λ_{phot} (?) :	2972.69		(Angstrom)
λ _{min} (?) :	1795.00		(Angstrom)
λ_{max} (?) :	4033.62		(Angstrom)
W _{eff} (?) :	743.98		(Angstrom)
FWHM (?):	732.34		(Angstrom)
A _f /A _V (?) :	1.86		()

Transmission curve

Data file: ascii, VOTable

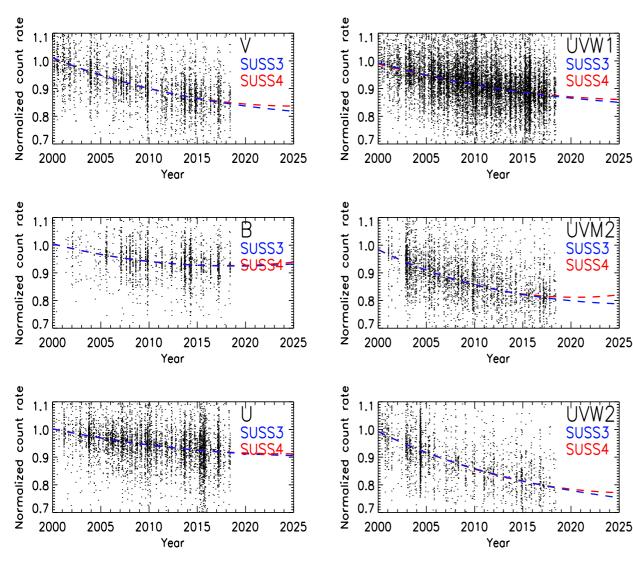
Reference for filter response: XMM-Newton Users handbook

Calibration properties

Vega System							
Property	Specified	Calculated	Unit				
Zero Point (?) :		3.638e-9	(erg/cm2/s/A)				
		1044.79	(Jy)				
ZP Type (?):	Pogson						
PhotCal ID (?) :	XMM/OM.	 XMM/OM.UVW1_filter/Vega					

AB System

Property	Specified	Calculated	Unit
Zero Point (?) :		1.264e-8	(erg/cm2/s/A)
		3631.00	(Jy)
ZP Type (?):	Pogson		
PhotCal ID (?) :	XMM/OM.	UVW1_filter	/AB


ST System

Property	Specified	Calculated	Unit
Zero Point (?) :		3.631e-9	(erg/cm2/s/A)
		1042.86	(Jy)
ZP Type (?):	Pogson		
PhotCal ID (?) :	хмм/ом.	UVW1_filter	/ST

Filter added: 2019-03-29 10:51:34 Last update: 2019-03-29 12:58:09 ESA UNCLASSIFIED - For Official Use

OM time-dependent sensitivity degradation CSA

OM throughput

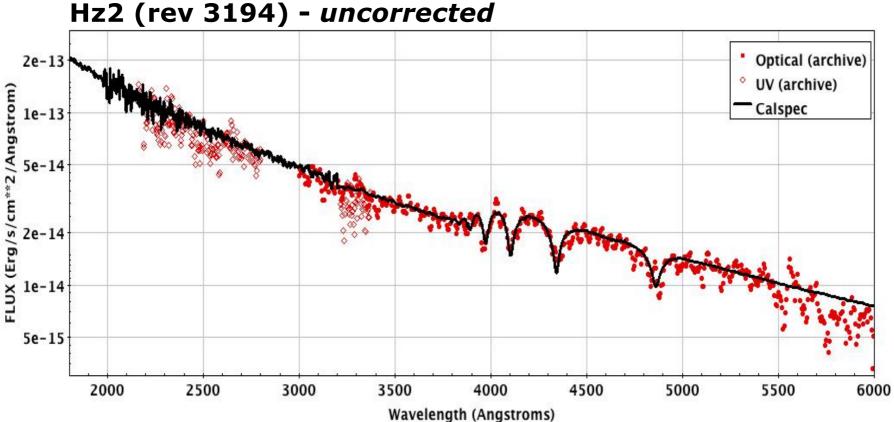
Filter	Current	Expected in 2030
V	0.85	0.84
В	0.92	0.92*
U	0.92	0.92
UVW1	0.88	0.85
UVM2	0.81	0.81*
UVW2	0.78	0.73

* Set at current values due to fitted function turnup.

From multiply-observed (>5x) OM SUSS4.1 catalogue sources

First implementation of time-dependent sensitivity degradation for the grisms

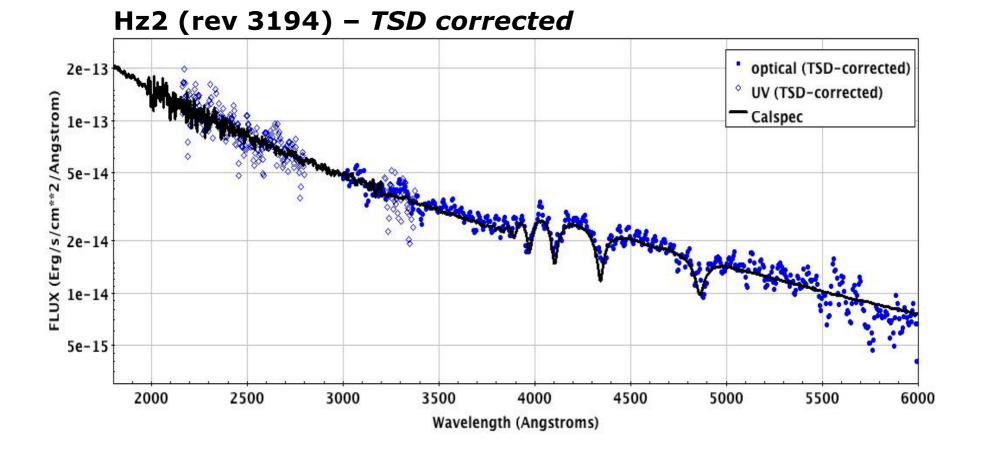
Year	UV_Grism	V_Grism
2000	1.00	1.00
2002	1.01	1.01
2004	1.02	1.02
2006	1.04	1.02
2008	1.05	1.03
2010	1.07	1.04
2012	1.08	1.04
2014	1.10	1.05
2016	1.12	1.06
2018	1.13	1.07
2020	1.15	1.07


Implemented in OM_GRISMCAL_0005

Accommodated by changes to OM grism SAS software

ESA UNCLASSIFIED - For Official Use

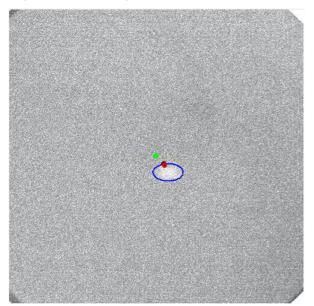
First time-dependent sensitivity degradation implemented for Grisms


ESA UNCLASSIFIED - For Official Use

_ FI ▶ ## # + FI ■ ½ _ FI FI _ FI = M FI _ FI = K ₩ ₩ ₩ ₩ IV

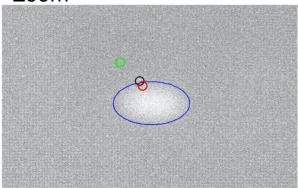
First time-dependent sensitivity degradation implemented for Grisms

ESA UNCLASSIFIED - For Official Use

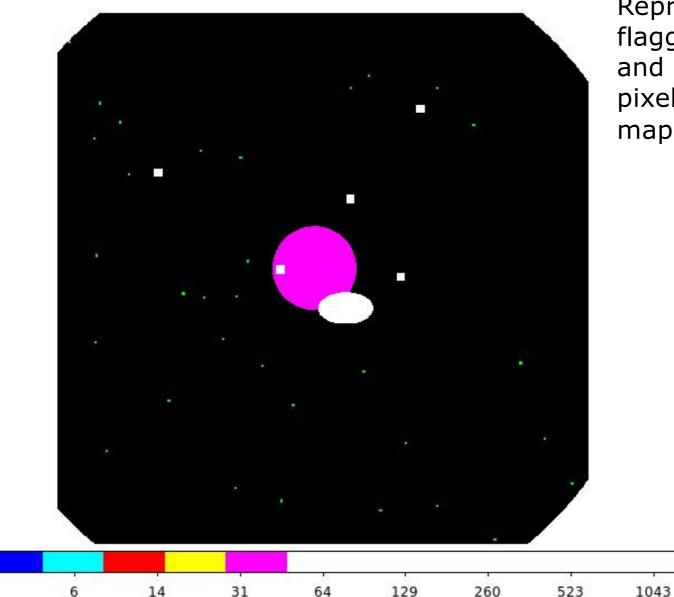

13 European Space Agency

*

Update on the Jupiter depletion patch


Flat field image (full frame)

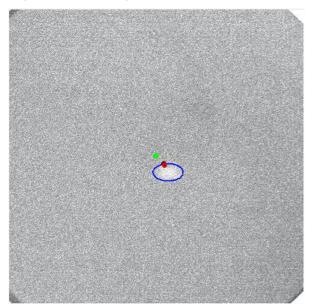
Accidental observations of Jupiter (16 July 2017)


- Elliptical lower sensitivity patch ~105" x 60" (~0.5% of FoV), up to ~ -35% (in V)
- Affected area flagged in the Bad Pixels CCF
 - Updated with new badpixel characterization
 - Distinguishes low sensitivity from bad pixels
 - New CCFs: OM_BADPIX_0007+0008

Zoom

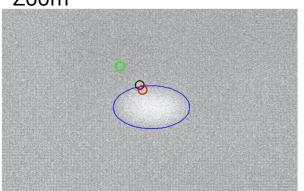
Update on the Jupiter depletion patch

Representation of flagged (including bad and low sensitivity) pixels in OM quality map products.


ESA UNCLASSIFIED - For Official Use

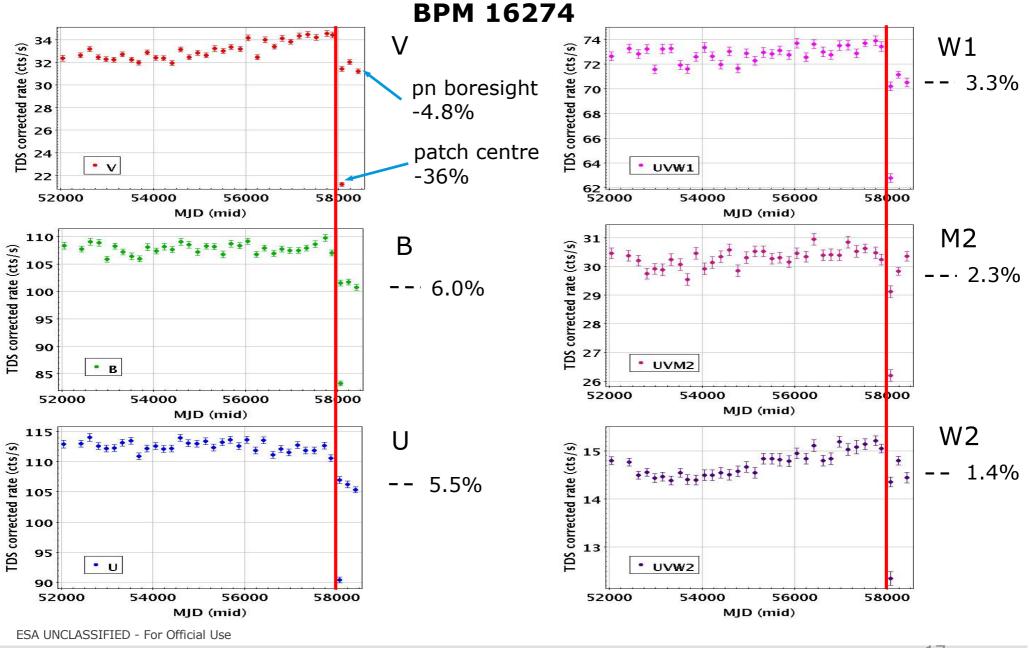
2

Update on the Jupiter depletion patch


Flat field image (full frame)

Accidental observations of Jupiter (16 July 2017)

- Elliptical lower sensitivity patch ~105" x 60" (~0.5% of FoV), up to ~ -35% (in V)
- Affected area flagged in the Bad Pixels CCF
 - Updated with new bad pixel characterization
 - Distinguishes low sensitivity from bad pixels
 - New CCFs: OM_BADPIX_0007+0008


Zoom

- pn boresight (typical target position) centred outside the Jupiter depletion patch bad pixels
- Routine standard star observations made at pn boresight since event

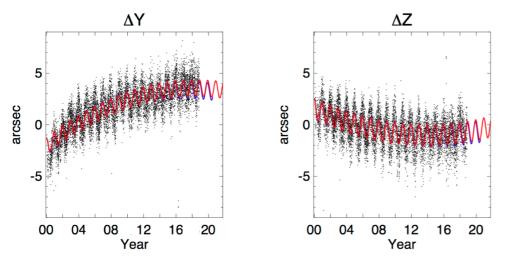
Impact on targets at pn boresight

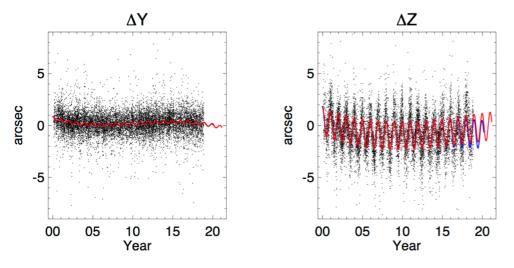
Impact on targets at pn boresight

In summary

- Patch sensitivity appears stable
- There is a small ($\lesssim 6\%$) degradation at pn boresight
 - \rightarrow users informed via XMM-Newton March 2019 newsletter

Ongoing monitoring


- New NRCO of BPM16274 just performed (source well outside patch), contemporaneous with RCO observation at the pn boresight
 - immediate comparison of the in/out of patch count rates
 - monitoring long-term time-dependent sensitivity via standards again


Updating the time-dependent boresight

OM

EPIC (P. Rodriguez)

 $\Delta = (P_1 + P_2 \times T + P_3 \times T^2) + P_4 T^3) + P_5 \times \cos[2\pi \times (T - P_6)/P_7)]$

Instrument/coordinate	P ₁	P_2	P ₃	P_4	P_5	P ₆	P ₇
EPIC/Y	+0.70			$-1.7 imes10^{-11}$		-13.58	364.0
EPIC/Z	+0.38		$+1.7 imes10^{-7}$	-7.8×10^{-12}	+1.35	-8.28	364.8
OM/X	-1.57	$+1.03 imes10^{-3}$	$-1.01 imes10^{-7}$		-1.02	-11.25	364.5
OM/Y	-2.04	$+1.66\times10^{-3}$	$-1.23 imes10^{-7}$		+0.81	-11.82	364.1

- Update (v29) of time-dependent boresight using latest data
- OM information from
 - catalogue cross-correlations (from pipeline processing)
 - field acquisition
- Long-term trend + annual variation
- Improves astrometry where catalogue cross-correlations not possible

A forward look

- Monitoring and updates from routine calibration, esp. time-dependent sensitivity degradation
- Small flux steps in photometry between
 - sub-exposures obtained in default imaging mode
 - fast-mode exposure segments obtained during default imaging mode
 - fast-mode photometry arising from exposure-exposure drift of offcentred sources
- Jupiter depletion patch
 - Exploration of approaches to correct photometry of sources within the reduced sensitivity patch

ESA UNCLASSIFIED - For Official Use

21 European Space Agency

ESA UNCLASSIFIED - For Official Use

22 European Space Agency