

A multiwavelength study of WHIM in Planck-detected superclusters: Searching for the missing baryons

Speaker Alex Kolodzig^{1,2}

- Collaborators Nabila Aghanim^{1,2}, Edouard Lecoq^{1,2}, Mathieu Langer^{1,2}, Victor Bonjean^{1,2}, Marian Douspis^{1,2}, Etienne Pointecouteau³
 - Affiliations 1 IAS, CNRS/Universite Paris-Sud, Universite Paris-Saclay, Orsay, France 2 ERC Project: *ByoPiC* (P.I.: Nabila Aghanim) https://byopic.eu 3 IRAP, Universite de Toulouse, CNRS, CNES, UPS, Toulouse, France
 - Venue XMM-Newton 2019 Science Workshop: "Astrophysics of hot plasma in extended X-ray sources", European Space Astronomy Centre (ESAC), Villafranca del Castillo, Madrid, Spain, We.12 - Fr.14.06.2019

THE BARYON PICTURE OF THE COSMOS (BYOPIC)

Main questions about the *hidden* baryons:

- Where are they today and what's their physical state? \odot
- How do they evolve and influence their environment? \odot
- How can we detect and study them? \odot

Main Focus:

• hot ionized baryons in "non/partially" virialised objects \rightarrow "super-clusters", "filaments", "bridges"

Approaches:

- Developing and applying **statistical tools** (e.g. DISPERS, machine learning):
 - identify the largest cosmic structures (e.g. filaments)
 - reconstruct the cosmic web and assess their physical state
- Multi-frequency analyses to trace the hot baryons (tSZ, X-rays), and cold baryons (galaxies, optical/IR) \odot
- Comparing and testing results with **cosmological simulations**

Marian Douspis

Auriele Decelle

Alexandre Beelen

Julien Grain Hideki Tanimura

Victor Bonjean

Alex Kolodzig

Céline Gouin

Malavasi

Nabila Aghanim (P.I.)

Marion Ullmo

Lecoa ALEX KOLODZIG

Hervé Dole

Nicola

Intro

Knots & filaments: ideal structures to study WHIM

ALEX KOLODZIG

WHIM stacking analysis – an (incomplete) overview

-2

0

 θ/θ_{sc}

-0.5↓ 0

Tanimura+2019b

tSZ stacking of galaxie pairs

X-ray stacking of filaments (in absorbtion)

2

1

 θ/θ_{sc}

Stacking versus individual-object studies

OStacking analyses of a source type (e.g. filaments):

- O Small cosmic variance
- Great for obtaining a census
- Blind to many physical properties
- O Limited knowledge of connection to the cosmic web
- Rather exhausted field
 - → new survey data needed (e.g. eROSITA all-sky survey, LSST)
- **O** Multiwavelength studies of individual large-scale structures:
- **⊙** High cosmic variance
- Require deep survey data
- More direct access to physical properties
- O Clear knowledge of connection to the cosmic web
- Many interesting sources available

Filaments around a single cluster (e.g. Abell 2744)

 O Joined analysis of X-ray, optical and lensing by Eckert+2016

• Gas in **filament structure**:

 ${
m O}\,{
m T}_{
m X-ray} \sim 10^7$ K, ${
m n}_{
m e} \sim 10^{-5}\,{
m cm}^{-3}$

O Gas mass fraction: M_{gas}/M_{DM+b} = 5-10%

• Radio (VLA): merging & accretion history

Pearce+2017

Eckert+2016

Bridge between two clusters (e.g. Abell 399 & 401)

 Separated analysis of X-ray, tSZ+optical/IR & Radio
 Bridge:

⊙ $T_{X-ray} > 10^7$ K, $Z_{Sun} \sim 0.3$ ⊙ tSZ + T_{X-ray} : n > 10⁻⁴ cm⁻³ ⊙ optical/IR:

early type galaxy population • Radio (LOFAR):

merging process and history

 \rightarrow No WHIM detection but exemplary study for it

Bonjean+2018

Akamatsu+2017

Govoni+2019

Superclusters (e.g. PLCKG 214.6+37.0)

Oined analysis of tSZ, X-ray,

optical by Planck Int. VI 2013

O Cluster members:

$$\begin{split} & T_{X\text{-}ray} \sim (4\text{-}5) \ x \ 10^7 \ \text{K} \\ & M_{500} \sim (2\text{-}3) \ x \ 10^{14} \ \text{M}_{sun} \\ & z \ \sim \ 0.45\text{-}0.48 \end{split}$$

→ Pioneering study but focus only on cluster physics

tSZ (Planck Intermediated data)

Our study

A multiwavelength study of WHIM in Planck-detected superclusters

Our motivation

- Study WHIM directly within large-scale structures
 - Access its physical state
 - Study its evolution and interaction with environment
- O Develop new methods to study WHIM
- Possible Targets:
 - Bridges: typically too hot & dense to be WHIM

(e.g. Bonjean+2018)

- Filaments: typically too faint
 - → stacking (absorption & emission) best channel
- Superclusters: most promising candidates

Supercluster: encouragement from stacking analysis

• Planck tSZ Stacking, (assuming $T_{e} = 8 \times 10^{6}$ K): $On_{e} = (1-3) \times 10^{6} \text{ cm}^{-3}$ • baryon density: $(\Omega_{\rm gas}/\Omega_{\rm b}) \sim 10\%$ $\odot \sim 17\%$ of missing baryons • RASS Stacking: no significant detection • But for **filament stacking**: significant detection in tSZ and X-ray!

SDSS Supercluster stacking with Planck tSZ

Our first targets

- Two **triplet-cluster** systems
 - 1. Supercluster "Planck #1": PLCKG214.6+36.9

z \sim 0.46, M_{500} \sim (2-3) x 10^{14} M_{sun} / cluster

2. Supercluster "Planck #2": PLCK G334.8–38.0

z \sim 0.35, M_{500} \sim (1-2) x 10^{14} M_{sun} / cluster

- 1st detection in tSZ cluster search with Planck's 1st sky scan (Planck Early VIII 2011)
- Confirmed by XMM-Newton snapshot (~10-20ks) and identified as the only two triplet systems (Planck Early IX 2011)
- Led to successful VLT XMM-Newton proposal (2012)
- "Planck #1": Joined tSZ , X-ray, optical analysis (Planck Int. VI 2013)
 → re-analyzed by Edouard Lecoq
- "Planck #2": Data was never analyzed \rightarrow focus of this talk

Planck #2: available data

Major analysis steps

- **1.** X-ray analysis:
 - Modeling cluster gas emission (via surface brightness and energy spectra)
 - Studying WHIM emission, if detected
- **2. Jointed X-ray tSZ** analysis:
 - Modeling tSZ emission with X-ray model (based on spectral fitting)
 - Studying WHIM emission, if detected
- **3. Joint X-ray tSZ optical** analysis:
 - Studying galaxy population in WHIM region
 - Lensing study, if data permits
- **4.** Forecast for current and future instruments and missions:
 - Simulating X-ray observation for XMM-Newton, Athena, ...
 - Making observation proposals for suitable candidates

X-ray Analysis: Overview

Radius [arcmin]

- Profiles measured up to 6 arcmin = $1.7 \text{ Mpc/h} = (3.4-4.1) \times R_{500}$
- Profiles drops below CXB for > \sim 3 arcmin = \sim 2 x R₅₀₀
- Simple beta-profile fit (jointly with all observations & detectors)
- Two different Inst.BKG estimates give consistent results

X-ray Analysis: (Best-Fit-Model) minus (DATA)

ByoPiC

Jointed X-ray – tSZ analysis: An outlook

Take-home messages

- WHIM stacking studies great success but blind to many of its physical properties
- Need complementary multiwavelength studies of individual structures
- Superclusters ideal target
- O Interesting sources available
 → our study hopefully emphasis deeper X-ray follow-ups
- O Accurate XMM-Newton BKG knowledge crucial!
 → Thank you S. Molendi, F. Gastaldello, D. Eckert, the XMM-Newton Team et al.