

Multi-temperature plasma and the spectroscopic-like temperature bias with the Athena-XIFU

FABIO GASTALDELLO INAF, IASF-Milano

M. Rossetti, S. Molendi, S. De Grandi, S. Ghizzardi, D. Buote, D. Eckert, S. Ettori

STRONG TEMPERATURE GRADIENTS ARE PRESENT IN THE ICM SUCH AS IN COLD FRONT OR SHOCK FRONTS

DIFFERENT TEMPERATURE COMPONENTS MIGHT BE COSPATIAL AS IN COOL CORES

• FOR DETERMINING MASSES THROUGH THE HYDROSTATIC EQUILIBRIUM YOU ASSUME A SINGLE TEMPERATURE PLASMA

ATHENA: INCREASING SPECTRAL RESOLUTION

ATHENA: INCREASING SPECTRAL RESOLUTION

Extended Data Figure 1 | **SXS spectrum of the full field overlaid with a CCD spectrum of the same region.** The CCD is the Suzaku X-ray imaging spectrometer (XIS) (red line); the difference in the continuum slope is due to differences in the effective areas of the instruments.

Hitomi collaboration 16

ATHENA

X-ray Integral Field Uni

Hitomi collaboration 16

INCREASING SPECTRAL RESOLUTION

Discovery of spectral lines resulting from transitions from the n=2 level in He-like ions in the solar spectrum: R (or w) : Resonance line (allowed) $1s2p \ ^{1}P_{1} \rightarrow 1s2 \ ^{1}S_{0}$ electronic dipole transition I (or x+y): Intercombination line triplet/quadruplet The Sun as seen in X-rays (from the Yohkoh satellite) $1s^2 {}^1S_0 - 1s2p {}^3P_1$ (y) $1s^{2} {}^{1}S_{0} - 1s2p {}^{3}P_{2}(x)$ F (or z) : Forbidden line 1s² ¹S₀ - 1s2s ³S₁ Simplified Grotrian diagram relativistic magnetic dipole transition (A_{ii} very low) 1Sn. Gabriel & Jordan (1969): ⇒plasma diagnostics: shell n=2 Density: $\Re(n_e) = F/I$ 2-photons W Temperature: $G(T_{e}) = (F + I) / R$ Metastable level shell n=1 (ground) Porquet & Dubau (2000) From D. Porquet presentation

Hitomi collaboration 16

IRON LINE TERMOMETER

This movie shows the changing behavior of the ratio of He- and H-like complex of lines as a function of temperature with the XMM pn

IRON LINE TERMOMETER

This movie shows the same energy band as a function of the temperature as the previous movie but with the X-IFU instrument.

Figure 3. As Fig. 1, but for metallicity Z = 1.

Mazzotta+04

X-rau Integral Field Unit

ATHENA: CCD SPECTROSCOPIC-LIKE TEMPERATURE BIAS

All source spectra with lower temperature component > 3 keV are statistically indistinguishable from a single T model

Mazzotta+04

ATHENA: CCD SPECTROSCOPIC-LIKE TEMPERATURE BIAS

Denser and cooler regions are weighted more by our combination of telescopes+CCDs

Mazzotta+04

Inner 0.5' of A1795, 100ks -> 4M counts in the 0.3-10 keV band

Repeat in the very narrow energy band (100 eV) with the Fe XXV He-like complex

A 2T simulated model with T1=6 keV and T2=7 keV. Already 7k counts just in this narrow energy band. Cstat/dof= 218/274

A 2T simulated model with T1=5 keV and T2=10 keV. Cstat/dof=456/274. Best fit T=6.64 keV

AGAIN POSSIBLE BIASES ...

FIT just in the narrow range: Cstat/dof=277/274. Best fit T=6.16 keV and Z=0.2 solar (simulated 0.3). Reminiscent of the Fe bias (Buote 00)

WHAT DO WE FIT AND HOW DO WE FIT ?

LOCAL VS GLOBAL FITS: using ratios of lines may miss details with respect to a self-consistent fit of the full spectrum (Hitomi coll.+17, the atomic code paper)

For Perseus a true multi-phase structure in which different temperature components are co-spatial can not be ruled out, projection effects are a natural explanation for deviations from a single temperature

Even in single or two temperature parameters, the best-fit parameters are sensitive to the effective area calibration

(Hitomi coll.+17, the T paper)

WHAT DO WE FIT AND HOW DO WE FIT ?

Fig. 7: Comparison of the best-fit temperatures and C-statistics among different ARFs and atomic databases for the modified 1CIE model.

SPECTROSCOPIC-LIKE BIAS TEMPERATURE PRESENT, BUT DEVIATIONS FROM A SINGLE TEMPERATURE EASIER TO DETECT THAN CCD

CHALLENGE IN THE ANALYSIS, COMPLEX MIX OF MODELING, CALIBRATION, COMPLEXITY OF THE SOURCE, ATOMIC CODES