XMM-Newton 2019 Science Workshop ***Astrophysics of hot plasma in extended X-ray sources** 2019-06-12 European Space Astronomy Centre (ESAC), Madrid, Spain

Modelling and simulations of supernova remnants

Gilles Ferrand

Research Scientist Astrophysical Big Bang Laboratory (ABBL) and Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS)

+ A. Decourchelle, S. Safi-Harb + S. Nagataki, D. Warren, M. Ono, F. Röpke, I. Seitenzhal

Modelling and simulations of supernova remnants with a focus on morphological studies

Introduction to SNRs

Structure and evolution of a remnant Multi-wavelength emission

1. SNRs as particle accelerators

Hydro-kinetic coupling for diffusive shock acceleration (DSA) Non-equilibrium ionization and thermal emission from the plasma Magnetic field amplification and non-thermal emission from the particles

2. SNRs as probes of the explosion

From the supernova to the remnant: Cas A, Tycho Example: the N100 supernova model X-ray image analysis

Supernova remnants

SNRs as a key link between stars and the ISM 0.1

Tycho's SNR age: ~440 yr distance: 1.5–5 kpc size: 8' ~3-12 pc

> hot, turbulent metal-rich plasma

multiwavelength composite image: X-rays (Chandra) - Optical (Calar Alto)

enrichment in heavy elements

average stars: up to C-O massive stars: up to Fe supernovae: above Fe

injection of energy

heating of the gas hydrodynamic turbulence magnetic field amplification

acceleration of particles

larger powerful larger powerful most favoured Galactic sources up to the knee (< 10^{15} eV)

Classification of SNRs

from radio + X-ray observations

shell

composites

"mixed morphology"

= thermal composite: centrally peaked plerionic
composite (= nonthermal composite):
PWN inside shell

filled-centre

Crab Nebula

isolated/shell-less
pulsar wind nebula
= PWN (= plerion)

or

bow shock nebula

(can be both)

The evolution of a supernova remnant

0.3

The structure of a young shell SNR

Tycho's SNR as seen by Chandra at age 433 yr 0.95 - 1.26 keV 1.63 - 2.26 keV 4.10 - 6.10 keV

Warren et al 2005

SNR broad-band emission

reviews (high energies perspective): Reynolds 2008, Vink 2012

SNRs as particle accelerators

SNRs are widely believed to be the main producers of CRs in the Galaxy

- Available energy budget but can we reach the knee?
- Known acceleration mechanism but what spectrum?
- Observed energetic electrons and protons?

If CRs are efficiently accelerated by the blast wave, it must impact its dynamics

- fluid becomes more compressible
- energy leaks from the system
- → non-linearly coupled system

CRs are a key ingredient of SNRs

^{1.2} Diffusive shock acceleration: the coupled system

reviews on DSA : Drury 1983, Jones and Ellison 1991, Malkov and Drury 2001 on numerical techniques for DSA: Marcowith et al (in prep)

Numerical simulations: hydro + kinetic

1.3

Computing the emission from the SNR

Thermal emission from the shocked plasma

Samar Safi-Harb Prof. at the University of Manitoba Canadian Research Chair

1.4

Ferrand, Decourchelle, Safi-Harb 2012

Non-thermal emission from the accelerated particles

Ferrand, Decourchelle, Safi-Harb 2014

^{1.5} Hydro- and thermodynamics of the plasma

Thermal emission in each cell depends on:

- plasma density n^2
- electron temperature T_e

progressive equilibration with protons temperature ${\cal T}_p$ via Coulomb interactions

• ionization states $f_i(Z)$

computation of **non-equilibrium** ionization

- solving the coupled time-dependent system of equations
 Patnaude et al 2009, 2010
- using the exponentiation method in post-processing

$$\tau_I = \int_{t_S}^t n(t').\mathrm{d}t'$$

Smith & Hughes 2010

all these parameters depend on the **history** of the material after it was shocked.

Thermal emission

test particle vs. back-reaction

test particle vs. back-reaction

test particle vs. back-reaction

Magnetic field and radiative losses

Non-thermal emission in each cell depends on:

- pion decay: plasma density n(x,t)
- synchrotron: magnetic field B(x,t) (amplified at the shock, then frozen in the flow)
- Compton: ambient photon fields (CMB)

Note: the acceleration model gives the CR spectra just behind the shock $f_p(p, x, t)$, $f_e(p, x, t)$ they must be **transported** to account for losses:

- adiabatic decompression $\alpha = \frac{\rho(x,t)}{\rho(x_S,t_S)}$
- radiative losses $\Theta \propto \int_{t_S}^t B^2 \alpha^{\frac{1}{3}} dt$

Non-thermal emission

Thermal + non-thermal emission

SNRs as probes of the explosion

^{2.1} From the supernova to the supernova remnant

2 main types: Type Ia : thermonuclear explosion of white dwarf still many competing models Type II, Ibc: core-collapse of massive star need to revive the shock: probably neutrinos

Supernova simulations in 3D explode. Sometimes. Successful explosions have a complex structure: does it impact the morphology of the remnant? What can the observed (morphology of the) SNR tell us about the explosion?

It is time to bridge SN studies and SNR studies

2.2

Cas A (from the SN) to the SNR

asymmetries in the 3D SN ejecta imposed by hand → can reproduce the overall morphology of the SNR after hundreds of years

Orlando et al 2016

Conclusions: the bulk of asymmetries observed are intrinsic to the explosion

CC SNe: asymmetric explosions

a grid of parametrized core-collapse neutrino-driven explosions from different stellar evolution models from shock revival to shock breakout

Wongwathanarat et al 2015

mass fraction of 56Ni, color-coded by velocity

time

Cas A from the SN (to the SNR)

maps of column density Fe (56Ni) 44Ti

Wongwathanarat et al 2017

one of the CC simulation models happens to mimic the morphology of Cas A SNR

X-ray observations Fe 44Ti

Si

Grefenstette et al 2014

From the 3D thermonuclear SN to the 3D SNR 2.5

3D simulations of thermonuclear supernovae

3D simulations of a TN supernova remnant

shocked ejecta at 500 yr

Ferrand et al 2010, 2012, 2014, 2016

(e) N3; t = 1.15 s

(f) N100; t = 1.00 s

Röpke 2007, Seitenzahl et al 2013

Friedrich (Fritz) Röpke Prof. at Ruprecht-Karls-Universität Heidelberg, Head of stellar group at Heidelberg Institute for **Theoretical Studies**

Ivo Seitenzahl **Research Fellow at** School of Science, University of New South Wales (UNSW), Australia

(Hiro) Nagataki Chief Scientist, Astrophysical **Big Bang** Laboratory

Don Warren Masaomi Ono Research **Scientists**

Hydro evolution of the SNR

slices of log(density)

from 1 yr to 500 yr on a 256^3 Cartesian grid (simulation made in co-expanding grid, box size increases by factor ~150)

1D initial profile (power-law)

effectively 1D initial profile (~exponential) full 3D initial profile

what SN people are telling us

what SNR people used to do

Ferrand et al 2019

Morphological signatures of the (thermonuclear) explosion can be seen clearly in the first hundred years, and may still be detected after a few hundred years.

Mapping the wavefronts (RS, CD, FS)

2.8

maps stored using HEALPix

 $(\Delta r/r)_{HS}$

0.3

-0.3

^{2.9} Spherical harmonics expansion of the wavefronts

contact discontinuity (CD) from 1 yr to 500 yr

see movies in online article

^{2.10} Rayleigh-Taylor from the SN and SNR phases

contact discontinuity (CD) at 500 yr

^{2.11} First conclusions and application to Tycho

Interestingly, using a realistic 3D SN model leads to larger scale and more irregular structures, which were not seen in SNR simulations made from (semi-)analytical SN models, and which **better match X-ray observations of Tycho's SNR**.

projection along l.o.s. of the density squared = proxy for the thermal emission \rightarrow next will compute the synthetic thermal (and non-thermal) emission

Future simulations will enable us to make comparisons between different SN explosion models:

- <u>between different ignition setups</u> for the DDT model, that produce different initial asymmetries and yields
- <u>between different SN explosion models</u>: pure deflagration, pure detonation, other detonations, other channels...

(Role of the companion star?)

grid of DDT explosions: varying ignition patterns

Seitenzahl et al 2013

example of double-detonation double-degenerate explosion

Tanikawa et al 2018

^{2.13} X-ray image analysis with genus statistics

"genus number" = no. of "clumps" - no. of "holes" for a black & white image, so for a given intensity threshold (Euler-Poincaré characteristic on the excursion set)

can distinguish smooth vs. clumpy ejecta profiles \rightarrow can quantify (the obvious) that Tycho is not smooth

Williams et al 2017, Sato et al 2019

^{2.14} A new way of investigating SNR kinematics

"The Hot and Energetic Universe" **Athena+** supporting paper

Decourchelle, Costantini, et al 2013

Let's explore the SNR in real 3D

Ferrand & Warren 2018 (CAPjournal)