

Nitrogen abundance in the X-ray halos of clusters and groups of galaxies

Junjie Mao

J. de Plaa, J. S. Kaastra, C. Pinto, L. Gu, F. Mernier, H.-L. Yan, Y.-Y. Zhang, and H. Akamatsu

ASTROPHYSICS OF HOT PLASMA IN EXTENDED X-RAY SOURCES

June 14, 2019 @ESAC, Madrid

Cosmic lab

The Illustris Simulation

M. Vogelsberger S. Genel V. Springel P. Torrey D. Sijacki D. Xu G. Snyder S. Bird D. Nelson L. Hernquist

Metal factories

RGS & Nitrogen

Emissivity – Temperature

8 out of 44 in the CHEERS sample ($Z_N > 3\sigma$) more exposure for a few low-T systems

See also Sanders & Fabian (2011)

Enrichment timescale

O: SNcc, massive progenitors Fe: SNIa (delay) N: AGBs, low- and intermediate- mass progenitors

Mao et al. 2019

Stellar yields

A mix of SNcc and SNIa enrichment is required for [O/Fe]
SNe enrichment is not enough to explain [N/O]

Mao et al. 2019

NGC 5044

Model degeneracy

Odd-Z elements (N, Na, Al)

 Initial metallicity of progenitors

 Need more observations

 Higher spectral resolution & large effective area (XRISM, Athena/XIFU, HUBS)

Nomoto et al. 2006 & 2013, Sanders & Fabian (2011), Paerels et al. 2014

Future perspectives

- Abundances from Carbon to Zinc in the core region
- Average abundance ratios with respect to Fe within R₅₀₀ at z ~0.1

Thanks for your attention!