Galaxy cluster observations: structure and dynamics of the intracluster medium

Jeremy Sanders

Max Planck Institute for Extraterrestrial Physics (MPE)

K. Dennerl, H. R. Russell, C. Pinto, A. C. Fabian, S. A. Walker, J. ZuHone, D. Eckert, T. Tamura, F. Hofmann

Clusters on large scales

Reiprich+13

Outer parts of clusters should be increasingly disturbed/turbulent due to merging subclumps

The turbulence in the intracluster medium (ICM), the main baryonic cluster component, should increase with radius Perseus cluster: XMM EPIC-MOS mosaic

Asymmetries likely caused by sloshing of gas in potential well due to perturbation, see e.g. Churazov+00, Simionescu+12

> Detailed view of outer cold front in Perseus: Walker+18 (talk in meeting)

1 degree (1.3 Mpc)

Perseus cluster: XMM EPIC-MOS mosaic

Asymmetries likely caused by sloshing of gas in potential well due to perturbation, see e.g. Churazov+00, Simionescu+12

> Detailed view of outer cold front in Perseus: Walker+18 (talk in meeting)

AGN feedback in clusters

Many clusters show short cooling times in their cores – would rapidly cool if emitted energy not replaced

Feedback is seen in the form of cavities generated by AGN jets in most clusters with short cooling times (e.g. Panagoulia+14)

Energetically, AGN can prevent cooling in majority of objects over a wide range in X-ray luminosity

- How does AGN feedback work in detail?
- How is the energy distributed from cavities?

500ks to 1.4Ms of Chandra exposure

> See Fabian+00, Schmidt+02, Fabian+03, Fabian+06, Sanders+07, Fabian+11

Cavities generated by AGN feedback

0

1 arcmin 22 kpc Perseus Cluster: applying gradient filter (Sanders+16)

Cold front "Fountain" Shock Cold front Ripples: sound waves? 'Ghost" cavities **Inner** cavities (however associated with low frequency radio)

"Bay": KH instability?

1 arcmin 22 kpc

Perseus Cluster: applying gradient filter (Sanders+16)

Cold front

"Ghost" cavities (however associated with low frequency radio)

sufficient to combat energy loss by radiation (Sanders+07)

"Bay": KH instability?

1 arcmin 22 kpc

Also further cavities and ripples (possible sound waves) on larger scales, indicating AGN repeatedly active on 10s Myr

- If density fluctuations are turbulence, then it could energetically do the heating: Zhuravleva+14
- However, (non-AGN) sloshing can be a significant contribution to the signal: Walker+18
- Possible issues with transport and efficiency: e.g. Fabian+16, Yang+16, Bambic+18

Feedback in simulations

Emission-weighted velocity centred on bubble. Feedback can give motions of 100s km s⁻¹

Directly measuring velocities crucial to understanding AGN feedback (including dissipation of energy), sloshing and cluster evolution

XMM-RGS measurements of velocities

Many cool core clusters with AGN feedback show line width limits < 500 km s⁻¹ Similar results found in a nearby sample in Pinto+15 (see his talk)

Hitomi and the Perseus cluster

Before its loss, Hitomi observed Perseus, obtaining high resolution spectra measuring the velocity structure. Little evidence for strong turbulence or motions.

Hitomi+16

Hitomi+18

Line widths imply line-of-sight velocity dispersion of 164±10 km s⁻¹

Measuring bulk flows using CCD detectors

- Measuring velocities important for understanding AGN feedback and the growth of clusters
- Unfortunately, we will need to wait until XRISM to get new Hitomi-quality ICM velocity measurements
- Although CCD detectors have a relatively low spectral resolution, can measure velocities using Fe-K redshift if the energy scale is well-calibrated
- Previous analyses with Suzaku include Tamura+14 and Ota+16
 - Limits or hints of motion at the level of several 100 km s⁻¹

Improving the calibration of XMM-Newton EPIC-pn

The EPIC-pn detector on XMM-Newton has a detector background including bright fluorescent lines, in particular Cu-Kα

As we know these line energies from lab measurements, we can improve the energy calibration of the detector

FF and EFF are the two full-frame detector modes 33 and 20 Ms of stacked spectra, respectively

Images of EPIC-pn in different background lines

Stacked images after subtracting instrumental background. Signal comes from electronics boards (Freyberg+01).

Cu-Kα

Νί-Κα

Zn-Kα + Cu-Kβ

Can only calibrate outer parts of detector using these lines!

EPIC-pn energy calibration improvement procedure

- Considerable work into improving energy calibration
- 3 stage approach to correcting the energy of X-ray events in addition to the standard calibration

- Stage 2: correct detector positiondependent gain
- Stage 3: correct energy scale

Results after correction

- Examine dispersion of energy correction factor in corrected individual (unstacked) calibration and astrophysical observations
- Implies energy scale is good to 100-200 km s⁻¹ at Fe-K
- May be better when combining observations of different epochs and aimpoints

Perseus cluster velocity measurements

- Independent spatial regions following surface brightness (created by hand)
- No central regions!
- Also Hitomi comparison region (Region 22)
- Fit spectra between 4 and 9.25 keV with cluster plus background model

Perseus cluster velocity measurements

- Our average velocity and the Hitomi average velocity are very close (<< systematics)
- Consistent velocity obtained in Hitomi comparison region (Region 22)

Perseus cluster velocity measurements

- Evidence for sloshing at 500±100 km s⁻¹ to east of core where there is a cold front (excl. systematic)
- Assuming distribution is Gaussian, LoS width of all points (except 22) is 260±90 km s⁻¹
- Excluding sloshing region, obtain width <220 km s⁻¹, similar to Hitomi in region without feedback

Perseus cluster maps: surface brightness

Perseus cluster maps: temperature and metallicity

Perseus cluster maps: velocity and uncertainty

Coma cluster

- Merging system
- Two central galaxies: NGC 4874 and NGC 4889
- Merging NGC 4839 group in south west. Neumann+01 claim likely has not passed through cluster.
- Second NGC 4921/4911 group to east, likely showing colder stripped gas from group (Neumann+03) into cluster core (Sanders+13)
- Construct 10 central regions and one for NGC 4839 group

Coma cluster – velocity results

- Coma ICM velocities match that of the central galaxies
- Material in centre and S, W and SW matches NGC 4889
- ICM velocity to N, E, NE and SE matches NGC 4874
- NGC 4839 group gas velocity consistent with optical

Future high resolution X-ray spectroscopy

Hitomi / XRISM (2021)

Athena (2031)

Perseus: 50 ks observations – real Hitomi vs simulated Athena XRISM will be great, but Athena will allow the study of scales on size of cavities

Conclusions

- Cores of clusters seem to have low levels of turbulence
- We developed a new technique for measuring bulk motions with XMM-Newton
- Good agreement with Hitomi measurement in Perseus
- Detect sloshing signal in the Perseus cluster
- See the gas velocity matches velocity of central galaxies in Coma
- Upcoming analyses with new offset observations:
 - Virgo cluster / M87
 - Centaurus cluster

Coma cluster – surface brightness images

Coma cluster – temperature and metallicity maps

Coma cluster – velocity map

Stage 1: correcting for average gain shift

- Measure Cu-Kα line 'redshift' (should be zero)
- Correct X-ray event energies to make redshift zero

0.1% = 8eV at Cu-K $\alpha = 300$ km s⁻¹ at Fe-K

Stage 2: correcting for position-dependent gain

Centre part of detector noisy because of lack of signal

- Stack astrophysical observations
- Measure Cu-Kα redshift as a functions of detector position and time
- Apply gain correction to events to remove spatial variation

Stage 3: correcting energy scale

- Energies of other background lines and calibration lines showed an energy scale correction was required
- Linear scaling model as a function of energy difference (δE/E) from Cu-Kα applied to stacked spectra
- Position dependent with linear increase in time

Centre of the Centaurus cluster Applying GGM gradient filtering 1.6 GHz, 330 MHz radio

Ripples – sound waves?

"Plume"

Inner cold front

Inner cavities

Shadow of galaxy

Cavities due to feedback? (ages few 10⁷ yr?) Western cold front: density/temperature discontinuity with constant pressure

or KH instability (Walker+17)?

AGN appears repeatedly active on timescales of 10s of Myr

