erosita on Srg

Jeremy Sanders on behalf of Peter Predehl Max-Planck-Institut für extraterrestrische Physik

Transport to NPOL (Lavochkin), 25.1.2017

Spectrum-Roentgen-Gamma landed in Baikonur

Unloading...

VOLGA (P

Abar

Mounting of SRG on the Block DM-03 upper stage

Anne

1.7.7

Docking of upper stage with Proton-M launch vehicle. Moving of launch vehicle to launch site planned today!

eROSITA FAQs

What is the launch date?

When gets data public?

How are data shared btw Ru/D?

Transient detections?

What is the sensitivity?

June 21, 2019

D: Survey after 2 years, incrementally D: Pointed after 1 year, as usual

50:50 in galactic coordinates

Yes, of course. But...

Point sources: $3 - 12 \times 10^{-15} \text{ erg/s/cm}^2$ Ext. sources: $1 - 4 \times 10^{-14} \text{ erg/s/cm}^2$

Science with eROSITA

ROSAT PSPC All-Sky Survey Multispectral MPE

The Moon June 29 1990

Bundle of 7 small telescopes To extend the all-sky survey towards higher energies

erosita

ROSAT 1990-1998 First X-ray all-sky survey

with an imaging telescope

failed shortly after launch

ABRIXAS science on the International Space Station

eROSITA

on Russian SRG Mission 10⁵ Clusters of Galaxies 7 bigger mirror modules extended field of view

not realised due to Shuttle schedule and ISS contamination problems

Dark Energy 0⁴ Clusters of Galaxies

> SMEX-proposal, ost against NuStar

Fully funded

Merloni, 5/2019

August 2009 Detailed Agreement DLR and Roscosmos

eROSITA Collaboration

PI: P. Predehl; PS: A. Merloni (MPE)

Core Institutes (DLR funding):

MPE, Garching Universität Erlangen-Nürnberg IAAT (Universät Tübingen) SB (Universität Hamburg) Leibniz-Institut für Astrophysik Potsdam

Associated Institutes: USM (LMU München) AIFA (Universität Bonn)

Russian Partner Institute: IKI, Moscow

Industry:Media Lario/IMirroTecnotron/DPCBsKayser-Threde/DMirroCarl Zeiss/DABRIXInvent/DTelespnSensor/DCCDsIberEspacio/EHeatRUAG/AMechHPS/D,PMLI+ many small companies

Mirrors, Mandrels PCBs Mirror Structures ABRIXAS-Mandrels Telescope Structure CCDs Heatpipes Mechanism MLI

COSTS: ~90 M€ (eROSITA) ~250-300 M€ (SRG)

MPE: Scientific Lead Institute, Project Managment

Instrument Design, Manufacturing, Integration & Test Data Handling & Processing, Archive etc.

Funding: DLR:MPG ~50:50%

Launch with PROTON/BLOK-DM from Baikonur 3-5 months, commissioning & CalPV (Cruise to Lagrange 2) 4 years survey, continuous rotation (~4hr) 3 years pointed observations

eROSITA - Schematic View

eROSITA Fact Sheet

Size Weight Power Data volume lifetime Launcher Launch Mission

Instrument 1,9m Ø x 3.5m 810kg 522W 600MB/day > 7 years PROTON/BLOK-DM March 2019 Orbit around L2

7 Mirror AssembliesWolter-I+ X-ray Baffle + Electr. Div.Diameter of outer shell358mmNumber of shells54focal length1600mmPSF/HEW on axis (1.5keV)18 arcsecHEW average FoV26 arcsecEffective Area (1.5keV)350 cm²

7 Camera Assemblies

pnCCD + Filterwheel + E-Box3 x 3 cm², pixelsize 75μm x 75μmTime Resolution50msecEnergy Resolution (1keV)~ 70eVQuantum Efficiency (1keV)~ 95%

Performance

Energy Range	0.3-7keV
Point Source Sensitivity	1.2E-14
P.S. Sensitivity at poles	2.9E-15
Extended Source Sens	3.4E-14
ES. Sensitivity at poles	1.0E-14

eROSITA_DE 12 working Groups 135 Members + External Collaborators

eROSITA surveys in context

"Design Driving Science" Cluster Cosmology

Vikhlinin et al., 2009

WMAP: Spergel et al. 2003 ROSAT: Schuecker et al. 2003

Clusters of galaxies are the largest gravitationally bound entities in the universe.

In X-rays we see clusters as one continuous entity.

Detectability of 100.000 Clusters of Galaxies, z < 1.5:

- All-sky survey with sensitivity 6×10^{-14} erg cm⁻² s⁻¹
- Deep survey field(s) (~100 sqdeg) with 1×10^{-14} erg cm⁻² s⁻¹
- Individual pointed observations
- Moderate angular resolution (< 28 arcsec, aver. over FoV)
- Large collecting area (> 2000 cm² @ 1keV)
- Large FoV (1° Ø)
- Long duration (survey 4 years $\leftarrow \rightarrow$ 1/2 year (ROSAT)

Will detect ALL Massive Clusters

- eROSITA will detect ~ 110k
 clusters with more than 50
 net counts; 2k with more than
 1000 counts
- ~20k clusters with good redshift determination, up to z~0.45
- ~2k clusters with precise
 Temperature (to <10%)
- eROSITA PSF is good enough to resolve $\sim 0.3R_{500}$ regions at z=1 for 10^{14} M_{\odot} clusters
- For cosmology, M_{gas} and core-excised L_X are excellent mass proxies with very low scatter (~10%)

T. Dauser

Simulation: 1.8 ks depth eFEDS field (~100 deg²)

2 deg

Simulation: 1.8 ks depth eFEDS field (~100 deg²)

2°deg°

ô

Radius \propto log flux above 10⁻¹⁴ cgs

 \bigcirc

Examining cluster outskirts

- Outer parts of a cluster probes many physical processes:
 - State of WHIM
 - Gas clumping
 - Deviations from hydrostatic equilibrium
 - Non-equilibrium ionisation
 - Stripping and hydrodynamics
 - Chemical process and history
 - Cold fronts and sloshing
 - Entropy profile vs theory
 - ...

Reiprich+13

Examining cluster outskirts

- Several nearby clusters and groups will have deep survey coverage (plus PV and calibration data)
- Field of view covers beyond R₂₀₀ at moderate redshifts

PV observation: filament between A3391/95

Credits: C. Zhang, F. Pacaud, M. Ramos-Ceja, T. Reiprich

Credit: D. Eckert

eROSITA surveys in context

Logarithmic scale!

Approx. Number of X-ray sources detected per year (from published catalogs, not corrected for duplications)

eROSIT

eROSITA surveys in context

At the end of its first year of operations, eROSITA will have detected as many new sources as have been catalogued in 50 years of X-ray astronomy.