## PHYSICAL PROPERTIES OF THE X-RAY GAS AS A DYNAMICAL DIAGNOSIS FOR GALAXY CLUSTERS

## Florence DURRET

## Institut d'Astrophysique de Paris and Sorbonne Université







## COLLABORATORS

## Tatiana Laganá Unversidade Cruzeiro do Sul, São Paulo, Brazil

Paulo Lopes, Observatorio do Valongo, Rio de Janeiro, Brazil





Laganá, Durret & Lopes 2019, MNRAS 484, 2807

## SUBSTRUCTURES IN CLUSTERS

- Clusters are formed through the merging of smaller structures
- Simulations show that substructures should be common
- The degree of substructure give information on the cluster history, and so do various maps of the X-ray gas
- Three regimes: cool-core clusters (CC), non cool-core clusters (NCC) and an intermediate category
- The fraction of CC clusters depends on the detection method (X-rays, SZ etc.), as shown e.g. by Lopes+18

## HOW CAN THE DYNAMICAL STATE OF A CLUSTER BE ESTIMATED?

- Offset between the X-ray centroid) and the brightest cluster galaxy (BCG)
- Magnitude gap between the two brightest galaxies
- Degree of substructures (depends on detection method)
- X-ray maps of the emissivity, temperature, pseudo-entropy, pseudo-pressure and metallicity

## OUR SAMPLE

# 53 nearby clusters (z<0.11) from the Lopes et al. (2018) sample with « good » XMM-Newton data



## METHOD

- Spectra extracted in the [0.7 7.0] keV band after usual reduction
- Fits with MEKAL XSPEC with fixed redshift and ≥15 counts per spectral bin give:
  - temperature kT
  - metallicity Z

- pseudo-entropy  $S = kT / I^{1/3}$  (I = intensity)
- pseudo-pressure  $p = kT \times I^{1/2}$
- 2D spectral maps in grid of 512 x 512 XMM-Newton EPIC pixels with minimum count number of 1500 after background
  subtraction, binned by 3x3 or 5x5 if necessary

## SOME EMISSIVITY MAPS



0.0T 06 0

#### • Temperature:

> Expected to be colder in the center for cool core clusters

8

#### • Metallicity:

Peaks at the center of clusters

Gives information on previous star formation

#### • Entropy:

- Expected to be symmetrical around the center and to increase towards the cluster outskirts
- Low entropy gas can be displaced by instabilities (cold fronts) or by gas stripping
- High entropy can also be due to local heating (AGN)

#### • Pressure:

Sensitive to gravitational and non-gravitational processes
 Fluctuations trace departure from local equilibrium (shocks, pressure waves)

## FOUR CATEGORIES OF CLUSTERS

- Cool core relaxed systems
- Cool core disturbed systems
- Non cool core relaxed systems
- Non cool core disturbed systems

Comparison with the classification based on the six criteria defined by Andrade-Santos et al. (2017) and Lopes et al. (2018)

## COOL CORE RELAXED SYSTEMS



0.0 T 0.6

## COOL CORE DISTURBED SYSTEMS



0.0 T 06 08

## NON COOL CORE RELAXED SYSTEMS



## NON COOL-CORE DISTURBED SYSTEMS



0.0T 06 0

## **RESULTS AND DISCUSSION**

- Cool core relaxed systems: 17 but 4 show only a weak cool core in kT map. Only 5 are spherical, and 2 show interactions (p map)
- Cool core disturbed systems: 16, with a cool core, but disturbed structure due to recent or ongoing merger events
- Non cool core relaxed systems: 4
- Non cool core disturbed systems: 16

Power of 2D X-ray maps to understand in depth the dynamical state of clusters

COMPARISON WITH HYDRODYNAMICAL SIMULATIONS: THE MERGING CLUSTER ABELL 3376

Mass ratio 1/6 to 1/8 Mach number M ≈ 4 Age of merger 0.5 Gyr





Machado & Lima Neto 2013, MNRAS 430, 3249

## FUTURE WORK

- Comparison with more hydrodynamical simulations (Machado et al. in preparation)
- Dynamical analysis by comparison of X-ray substructures with substructures based on galaxy redshifts (Biviano et al. in preparation)

## i Gracias !