Exoplanets and host stars

J. Schmitt Hamburger Sternwarte

Email: jschmitt@hs.uni-hamburg.de

Internet: http://www.hs.uni-hamburg.de

RESULTS FROM AN EXTENSIVE EINSTEIN STELLAR SURVEY

G. S. Vaiana,¹ J. P. Cassinelli,^{2,4} G. Fabbiano, R. Giacconi, L. Golub, P. Gorenstein, B. M. Haisch,^{3,4} F. R. Harnden, Jr., H. M. Johnson,^{4,6} J. L. Linsky,^{3,4,5} C. W. Maxson, R. Mewe,^{4,7} R. Rosner, F. Seward, K. Topka, and C. Zwaan^{4,7}

Ap.J, 244, 1981

First Hertzsprung-Russell of X-ray detected stars!

38 years later

The first (preliminary) HR-diagram with eROSITA detected stars (from 0.4% of the sky):

The Sun seen by SOHO

Fundamental insight:

The active Sun is NOT typical for the X-ray detected stars!

Detected number of extrasolar planets:

Spectral type distribution of host stars:

Fundamental insight:

Planet host stars are cool stars!

To understand extrasolar planets need to understand cool stars!

Nice planet you've got there.

Would be a shame if something happened to it...

The host star is responsible for

- Planetary environment (radiation and particles)
- Planetary evaporation
- Planetary formation

Tian et al. (2008): Response of Earth's thermosphere to solar flux

XMM-Newton spectroscopy of the RS CVn Capella

XMM-Newton RGS: α Centauri A+B (inactive star)

(Liefke & Schmitt 2006)

Courtesy: J. Robrade Ness et al. (2004)

Robrade & Schmitt (2007)

Fundamental insight:

The X-ray luminosities and X-ray spectra of stars change dramatically with time!

Güdel & Kasting (2009): The Sun in time

Also:

(Some) stars like to flare

Proxima Centauri: (Anglada-Escude et al. 2016)

Earth-like planet around Sun's neighbour

An Earth-mass planet has been discovered in orbit around Proxima Centauri, the closest star to our Sun. The planet orbits at a distance from the star such that liquid water and potentially life could exist on its surface. SEE LETTER P.437

Mass: 1.3 M_{Earth}

Period: 11.2 days

Distance: 0.05 au

Ribas et at. (2016):

The habitability of Proxima Centauri b

I. Irradiation, rotation and volatile inventory from formation to the present

Turbet et at. (2016):

The habitability of Proxima Centauri b

II. Possible climates and observability

XMM-Newton: Flare on Proxima Centauri: Güdel et al. (2001)

Incident X-ray flux > 10000 times larger than solar X-ray at Earth!

Courtesy: J. Robrade Ness et al. (2004)

Robrade & Schmitt (2007)

X-ray spectrum of TW Hya (CTTS): OVII triplet

X-ray influence on planet formation

Conclusions:

- (Almost) all extrasolar host stars are X-ray sources
- Need to understand the activity properities of the host stars in all respects
- Expect ionospheres and hydrodynamic blowoff for the close-in extrasolar planets
- * XMM-Newton can make (still) valuable contributions to the field !!

The End!