The pnCCD camera on XMM-Newton

L. Strüder, U. Briel, K. Dennerl, R. Hartmann, E. Kendziorra, N. Meidinger, E. Pfeffermann,
C. Reppin, B. Aschenbach, W. Bornemann, H. Bräuninger, W. Burkert, M. Elender, M. Freyberg,
F. Haberl, G. Hartner, F. Heuschmann, H. Hippmann, E. Kastelic, S. Kemmer, G. Kettenring,
W. Kink, N. Krause, S. Müller, A. Oppitz, W. Pietsch, M. Popp, P. Predehl, A.Read,
K. H. Stephan, D. Stötter, J. Trümper, P. Holl, J. Kemmer, H. Soltau, R. Stötter, U. Weber,
U. Weichert, C. von Zanthier, D. Carathanassis, G. Lutz, R. H. Richter, P. Solc, H. Böttcher, J. Krämer,
B. Kretschmar, M. Kuster, R. Staubert, A. Abbey, A. Holland, M. Turner, M. Balasini, G. F. Bignami,
N. La Palombara, G. Villa, W. Buttler, F. Gianini, R. Lainé, D. Lumb and P. Dhez

The pnCCD sensors on XMM-Newton

L. Strüder, U. Briel, K. Dennerl, R. Hartmann, E. Kendziorra, N. Meidinger, E. Pfeffermann,
C. Reppin, B. Aschenbach, W. Bornemann, H. Bräuninger, W. Burkert, M. Elender, M. Freyberg,
F. Haberl, G. Hartner, F. Heuschmann, H. Hippmann, E. Kastelic, S. Kemmer, G. Kettenring,
W. Kink, N. Krause, S. Müller, A. Oppitz, W. Pietsch, M. Popp, P. Predehl, A.Read,
K. H. Stephan, D. Stötter, J. Trümper, P. Holl, J. Kemmer, H. Soltau, R. Stötter, U. Weber,
U. Weichert, C. von Zanthier, D. Carathenassis, G. Lutz, R. H. Richter, P. Solc, H. Böttcher, J. Krämer,
B. Kretschmar, M. Kuster, R. Staubert, A. Abbey, A. Holland, M. Turner, M. Balasini, G. F. Bignami,
N. La Palombara, G. Villa, W. Buttler, F. Gianini, R. Lainé, D. Lumb and P. Dhez

+ input for this talk from Michael Smith

Outline

- 1. The first years of the pnCCD detector development
 - the very first steps, the concept and the idea behind
 - upgrading the fabrication technology
- 2. Performance in space
 - stability, radiation hardness
 - micrometeorite impact
 - X-ray background
- 3. Lessons learnt during the camera development
- 4. The use of pnCCDs today
 - in basic and applied science
 - in industry

Emilio Gatti (1922 - 2016)

Pavel Rehak (1945 - 2009)

Josef Kemmer 1935 - 2007

300

shift of signal charges

sensitive thic kness (280 µm)

Gerhard Lutz 1939 - 2017

pnCCD operation

detector fabrication around 1980 @ the TUM

pnCCD development history

First publication about the possibility of making pnCCDs: ≈ 1983 Start of my PhD on the development of pnCCDs for HEP: ≈ 1984 Proposal of pnCCDs for X-ray astronomy ≈ 1987 First operating devices (1 x 52 pixel): ≈ 1987 Invention of the fully parallel readout and associated ASIC: ≈ 1990 Electro Optical Breadboard (EOBB) Phase (64 x 200 pixel): ≈ 1992 Move semiconductor laboratory from Garching to Munich-Pasing ≈ 1991 – 1992 Camera development ≈ 1993 – 1999 First flight type pnCCDs with moderate performance: ≈ 1995 – 1996 ≈ 1997 – 1998 Production of the flight and flight spare devices: ≈ 1998/1999 Delivery to ESA/ESTEC:

detector fabrication around 1995 @ the MPI HLL in Munich – Pasing where all XMM flight sensors were processed

The XMM EPIC pnCCD

Device parameter

- Monolithic array of 12 pnCCDs
- \triangleright 200 x 64 pixels each
- \triangleright pixel size: 150 x 150 μ m²
- \triangleright 6 x 6 cm² sensitive area
- ▷ 4" wafer
- \triangleright 280 μm thick
- \triangleright Common entrance window

Performance

- ▷ 5 e- ENC
- \triangleright Readout time
 - 4.5 ms
- Integration time100 ms
- Energy resolution153 eV FWHM @ 5.9 keV

proton flare measured during flight

start of a proton flare during flight

minimum ionizing particles

The instrumental Cu lines - energy calibration at 6-9 keV

64 Ms of astrophysical data

Sanders et al. 2019, A&A in press

Analysis of scatter particles: CCD damage

A&A 375, L5–L8 (2001) DOI: 10.1051/0004-6361:20010916 © ESO 2001

Evidence for micrometeoroid damage in the pn-CCD camera system aboard XMM-Newton

L. Strüder¹, B. Aschenbach¹, H. Bräuninger¹, G. Drolshagen³, J. Englhauser¹, R. Hartmann², G. Hartner¹, P. Holl², J. Kemmer², N. Meidinger¹, M. Stübig⁴, and J. Trümper¹

Experimental Verification of a Micrometeoroid Damage in the PN-CCD Camera System aboard XMM-Newton

Norbert Meidinger^{a,*}, Bernd Aschenbach^a, Heinrich Bräuninger^a, Gerhard Drolshagen^b, Jakob Englhauser^a, Robert Hartmann^c, Gisela Hartner^a, Ralf Srama^d, Lothar Strüder^a, Martin Stübig^d, and Joachim Trümper^a

Analysis of scatter particles: SEM, XRF

- craters in silicon: 0.1 μm and 10 μm
- similar for dust and scatter particles

Examples of improvements of pnCCDs (e.g. for eROSITA and others, fabricated in 2008)

Total citations	0	1880
Normalized citations	0	32.4
Refereed citations	?	1743
Normalized refereed citations	8	30.1
Total	Normalized	

stacked • grouped •

Papers

Astronomy Astrophysics

The European Photon Imaging Camera on XMM-Newton: The pn-CCD camera*

L. Strüder¹, U. Briel¹, K. Dennerl¹, R. Hartmann², E. Kendziorra⁴, N. Meidinger¹, E. Pfeffermann¹, C. Reppin¹, B. Aschenbach¹, W. Bornemann¹, H. Bräuninger¹, W. Burkert¹, M. Elender¹, M. Freyberg¹, F. Haberl¹, G. Hartner¹, F. Heuschmann¹, H. Hippmann¹, E. Kastelic¹, S. Kemmer¹, G. Kettenring¹, W. Kink¹, N. Krause¹, S. Müller¹, A. Oppitz¹, W. Pietsch¹, M. Popp¹, P. Predehl¹, A. Read¹, K. H. Stephan¹, D. Stötter¹, J. Trümper¹, P. Holl², J. Kemmer², H. Soltau², R. Stötter², U. Weber², U. Weichert², C. von Zanthier², D. Carathanassis³, G. Lutz³, R. H. Richter³, P. Solc³, H. Böttcher⁴, M. Kuster⁴, R. Staubert⁴, A. Abbey⁵, A. Holland⁵, M. Turner⁵, M. Balasini⁶, G. F. Bignami⁶, N. La Palombara⁶, G. Villa⁶, W. Buttler⁷, F. Gianini⁸, R. Lainé⁸, D. Lumb⁸, and P. Dhez⁹

for 6 keV X-rays the system delivers 4k x 4k resolution points in all the area with less than one photon per pixel (typ. 90 %)

Strüder et al., Nucl. Instr. and Meth. A 614 (2010), 483 - 496

Imaging

7.8 x 3.7 cm² = 29.6 cm² 75 x 75 μm² 1024 parallel read nodes 6 e⁻ @ 120 fps

PNSenser XMM – Newton 20th anniversary, Dec-10/11 2019, ESAC, Madrid

0210

Imaging of X-rays at LCLS

Henry Chapman et al., Nature 470, 73–77 (03 February 2011)

PS1: Membrane protein photosystem I, typical size: 100 nm to 1 μm

Specifications of the pnCCD for transmission electron microscopy

Parameter	Value
Image Area	12.7 mm × 12.7 mm
Physical pixel size	48 μm × 48 μm
Detector Thickness	450 μm
Number of Pixel	264 × 264
Number of Subpixel	1,320 × 1,320
Full Frame Rate	2,000 fps
Windowing/Binning Modes	e.g. 7,500 fps (4-fold binning)
Pixel-Readout Rate	70 Mega Pixel / s
Radiation Hardness	> 10 ¹⁸ e ⁻ /cm ² (300 keV)
Readout-Noise (RMS) (low gain)	ENC < 30 e ⁻ / Pixel @ 1000 Hz, 120 keV
Working Energy Range	10 keV - 300 keV (and above)

Application: Electron ptychography

- Sample: Graphene
- JEOL ARM 200F @ 80keV Emission 10.3µA, Spot 10C, Mag x80M
- 256 × 256 probe positions in < 35 sec
- 2 000 fps read out

In cooperation with Y. Kondo, R. Sagawa, JEOL Ltd.

simultaneously obtained ADF image

phase image (contrast inverted)

PNSenser XMM – Newton 20th anniversary, Dec-10/11 2019, ESAC, Madrid

confidential

Summary and conclusions

- the pnCCDs on XMM-Newton are operating according to expectations : fast, low noise, highly sensitive, stable
- pnCCDs are insensitive to soft proton flares
- pnCCDs are not destroyed by micrometeorites
- pnCCDs are used at brillant light sources:
 X-ray Free Electron Lasers: LCLS, FLASH, SACLA, Eu-XFEL,
 Synchrotrons: BESSY I+II, ESRF, Diamond, NSLS, ...
- Wave front sensors in adaptive optics
 Full Field X-ray fluorescence with conventional X-ray sources
 X-ray diffraction

Not yet The End