Crab nebula & pulsar

Moon

Lead-up from ROSAT to XMM-Newton

her

Betelgeuse

Orion nebula belt stars

Joa

Sirius B

The ROSAT sky over Munich in December

ESAC Madrid

1990/91 ROSAT performed the first all sky survey with an imaging X-ray telescope in half a year - boosting the number sources from 841 (HEAO-1) to about 100.000. In the following 8 years it performed ten thousands of pointed observations for a wide astrophysical community

illustrating the synergy between ROSATand XMM-Newton

1. ROSAT 1996: A great surprise: Comets emit X-Rays!

Electron exchange between solar wind ions neutral gas atoms of the coma (Cravens, 1997).

Until now more than 30 comets have been detected by ROSAT, EUVE, XMM-Newton & Chandra)

Line Ratios for Solar Wind Charge Exchange with Comets

P.D. Mullen, R.S. Cumbee, D. Lyons et al. 2017

Comet C/2000 WM1 (linear)

Charge exchange happens at any interface between hot plasma and cool gas

Refereed publications on charge exchange related to the discovery of cometary X-ray emission

K. Dennerl 2010 : Total 160 papers December 4, 2019 : 390 papers

2. ROSAT Discovery of Shrapnels in the Vela Supernova Remnant

B. Aschenbach, R. Egger & J. Trümper 1995

The shrapnells show Mach cones indicating supersonic velocities (Mach numbers 2.4 ... 4) in the surrounding hot ISM (T ~ 10⁶ K). Obviously they represent compact fragments which are moving with higher velocity than the shock front

X-ray Spectroscopy of Vela Shrapnel A with XMM-Newton

S. Katsuda & H. Tsunemi 2006

		Parameter	Head region in figure 1	Tail region in figure 1		
		$N_{ m H} [10^{20}{ m cm}^{-2}]$	$3.2^{+1.4}_{-0.4}$	$1.4^{+0.02}_{-0.01}$		
		$kT_{\rm e}[{ m keV}]$	$0.52{\pm}0.01$	$0.37 {\pm} 0.01$		
		С	2.5 ± 0.2	$2.6^{+0.5}_{-0.6}$		
		Ν	$0.55\substack{+0.06 \\ -0.08}$	$0.5_{-0.1}^{+0.2}$		
Silicon 3.3 x solar		O	$0.34{\pm}0.01$	$0.4\substack{+0.01\\-0.02}$		
		Ne	1.07 ± 0.04	$1.28\substack{+0.09\\-0.07}$		
		Mg	$0.87 {\pm} 0.08$	$0.96\substack{+0.4\\-0.3}$		
	\rightarrow	Si	$3.3 {\pm} 0.3$	$3.7^{+0.7}_{-1.0}$		
		Fe	$0.96 {\pm} 0.03$	$1.10\substack{+0.08\\-0.07}$		
		$\log(\tau) [m s cm^{-3}]$	$10.75 {\pm} 0.02$	$10.97\substack{+0.04\\-0.03}$		
		$\mathrm{EM}[\mathrm{cm}^{-5}]^{\mathrm{a}}\ldots$	$(2.35^{+0.1}_{-0.03}) \times 10^{17}$	$(0.53^{+0.04}_{-0.02}) \times 10^{17}$		
		χ^2 /d.o.f	705/465	698/544		

Silicon is overabundant in this and other shrapnels (e.g. G) indicating that they originate in deeper layers of the exploding star

Note. — Other elements are fixed to those of solar values. The values of abundances are multiples of solar value. The errors are in the range $\Delta \chi^2 < 2.7$ on one parameter.

Mere accident? Indication of a Si-reach bilateral jet of ejecta in the Vela SNR observed with XMM-Newton (Garcia et al 2017)

ROSAT map of the Vela SNR

XMM-Newton image of shrapnel G 3.5 25:00.0 3.0 30:00.0 W 35:00.0 2.5 -47:40:00.0 2.0 45:00.0 1.5 50:00.0 30.0 21:00.0 30.0 19:00.0 18:30.0 30.0 8:20:00.0 1.0

Summary of over-abundances in shrapnels of the Vela SNR:

- A: Carbon, Silicon
- G: Neon, Magnesium, Silicon
- D: Oxygen, Neon, Magnesium,

That tells us about the depths the shrapnels are coming from

3. The thermally emitting isolated neutron stars (XTINS alias Magnificent Seven) discovered by ROSAT

Compilation by F. Haberl 2018

Object	kT_{∞} (eV)	P (s)	p.f. ^a (%)	\dot{P} (s s ⁻¹)	$\frac{B_{\rm dip}}{(10^{13}\rm G)}$	τ (Myr)	t _{kin} (Myr)	$m_{\rm B}{}^b$ (mag)	d^c (pc)
RX J0420.0-5022	48	3.45	17	-2.8×10^{-14}	1.0	1.95	?	26.6	~345
RX J0720.4-3125	84-94	16.78	8-15	-1.40×10^{-13}	5.0	1.91	0.85	26.6	286^{+27}_{-23}
RX J0806.4-4123	95	11.37	6	-5.50×10^{-14}	2.5	3.24	?	>24	~250
RX J1308.6+2127	100	10.31	18	-1.12×10^{-13}	3.5	1.45	0.55/0.90/1.38	28.4	?
RX J1605.3+3249	100	?	<2	?	?	?	0.45	27.2	~390
• RX J1856.5–3754	61	7.06	1	-2.97×10^{-14}	1.5	3.80	0.42 - 0.46	25.2	120^{+11}_{-15}
RX J2143.0+0654	104	9.43	4	-4.00×10^{-14}	1.9	3.72	?	>26	~430

For the brightest source RX J856-3754 the distance is known well by HST measurements

Trümper, Burwitz, Haberl, Zavlin 2004:

The neutron star has a small hot polar cap seen in X-rays and a radius $R_{infinity} = 16.8$ km, corresponding to R ~ 13 km for M = 1.4 M₀

This result requires a stiff equation of state of the high density nuclear matter

RX J1856-3754 is one of the calibration sources of XMM-Newton and Chandra The diagram shows the stability of the pnCCD over a period of 17 years K. Dennerl, V. Burwitz, private communication 2019

4. X-ray Archeology of the Coma Cluster

White, Briel & Henry 1993

A smaller cluster falling into the Coma cluster Intensity fluctuations at the center are due to previous mergers

XMM-Newton: Turbulence in the Coma galaxy cluster resulting from previous mergers

P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer & U.Briel 2004

Pressure map of the inner region

Entropy

Residual substructure

XMM-Newton Study of the Morphology Distribution of a Representative ROSAT Cluster Sample G. G. Chon & H. Böhringer 2017

Selection of a representative, volume-limited sample of 93 systems from the clusters found in the ROSAT Survey (z < 0.1)

Detailed, deep study of a cluster sample with XMM-Newton and structural analysis

Statistics of Morphologies

volume –lim. sample: 30% regular 60% disturbed 10% intermed.

Compared to fluxlimited (traditional): 41% regular 45% disturbed (rest intermed.)

Cool-Core-Statistic vol.-lim.: 39% flux-lim.: 53 -60% Planck: 29%

ROSAT and Planck are not so different if compared using similar selection !

5. ROSAT discovery of tidal disruptions by massive black holes

spiral galaxy.

Circle: ROSAT HRI X-ray error box.

Flows of X-ray gas reveal the disruption of a star by a massive black hole

J.M. Miller, J.S. Kaastra, M.C. Miller and 18 co-authors

ROSAT All Sky Survey: L_x < 4.8 x 10⁴⁰ erg s⁻¹

The gray band depicts the t^{-5/3} flux decay predicted by fundamental theory M.J. Rees 1988 The best-fit photoionized absorption model for the outflowing gas detected in each spectrum is shown in red

Modest outflow speeds of few × 100 km s⁻¹ are observed

The Future: Lead-up to the third decade of XMM-Newton and to ATHENA

eROSITA on SRG:

Athena

Launched in July 2019 on the Russian SRG - 4 years all-sky survey, sensitivity ~ 20 x ROSAT all sky survey > 3 years pointed observations

eROSITA with will discover many new sources, which can be studied with the advanced instruments of Athena

- cryogenic X-ray spectrometer X-IFU and
- wide field imager WFI

THANK YOU !