Lead-up from ROSAT to XMM-Newton

Joachim Trümper
XMM-Newton 20th anniversary at ESAC Madrid
December 2019
1990/91 ROSAT performed the first all sky survey with an imaging X-ray telescope in half a year - boosting the number sources from 841 (HEAO-1) to about 100,000. In the following 8 years it performed ten thousands of pointed observations for a wide astrophysical community.

Note that the numbers for some of the missions include publications from collimated instruments, e.g. in the case of EXOSAT from the ME-experiment.

In the following I will discuss five scientific topics illustrating the synergy between ROSAT and XMM-Newton.
1. ROSAT 1996: A great surprise: Comets emit X-Rays!

Electron exchange between solar wind ions neutral gas atoms of the coma (Cravens, 1997).

Until now more than 30 comets have been detected by ROSAT, EUVE, XMM-Newton & Chandra)

Comet C/2000 WM1 observed with XMM-Newton (K. Dennerl 2000)

The first XMM-Newton spectrum of a comet (K. Dennerl 2003)
Line Ratios for Solar Wind Charge Exchange with Comets

P.D. Mullen, R.S. Cumbee, D. Lyons et al. 2017

Comet C/2000 WM1 (linear)

J. Trümper, Madrid 2019
Charge exchange happens at any interface between hot plasma and cool gas
The shrapnells show Mach cones indicating supersonic velocities (Mach numbers 2.4 ... 4) in the surrounding hot ISM ($T \sim 10^6$ K). Obviously they represent compact fragments which are moving with higher velocity than the shock front.
X-ray Spectroscopy of Vela Shrapnel A with XMM-Newton

S. Katsuda & H. Tsunemi 2006

Table 1. Spectral-fit parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Head region in figure 1</th>
<th>Tail region in figure 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$N_H [10^{20} \text{ cm}^{-2}]$</td>
<td>$3.2^{+1.4}_{-0.4}$</td>
<td>$1.4^{+0.02}_{-0.01}$</td>
</tr>
<tr>
<td>$kT_e [\text{keV}]$</td>
<td>$0.52^{+0.01}_{-0.01}$</td>
<td>$0.37^{+0.01}_{-0.01}$</td>
</tr>
<tr>
<td>C</td>
<td>$2.5^{+0.2}_{-0.6}$</td>
<td>$2.8^{+0.5}_{-0.6}$</td>
</tr>
<tr>
<td>N</td>
<td>$0.55^{+0.06}_{-0.08}$</td>
<td>$0.5^{+0.1}_{-0.1}$</td>
</tr>
<tr>
<td>O</td>
<td>$0.34^{+0.01}_{-0.01}$</td>
<td>$0.4^{+0.01}_{-0.02}$</td>
</tr>
<tr>
<td>Ne</td>
<td>$1.07^{+0.04}_{-0.04}$</td>
<td>$1.28^{+0.09}_{-0.07}$</td>
</tr>
<tr>
<td>Mg</td>
<td>$0.87^{+0.08}_{-0.08}$</td>
<td>$0.96^{+0.07}_{-0.07}$</td>
</tr>
<tr>
<td>Si</td>
<td>$3.3^{+0.3}_{-0.3}$</td>
<td>$3.7^{+0.1}_{-0.1}$</td>
</tr>
<tr>
<td>Fe</td>
<td>$0.96^{+0.03}_{-0.03}$</td>
<td>$1.1^{+0.07}_{-0.07}$</td>
</tr>
<tr>
<td>log(τ) [s cm^{-3}]</td>
<td>$10.75^{+0.02}_{-0.02}$</td>
<td>$10.97^{+0.04}_{-0.03}$</td>
</tr>
<tr>
<td>EM[cm^{-5}]</td>
<td>$(2.35^{+0.1}_{-0.03}) \times 10^{17}$</td>
<td>$(0.53^{+0.04}_{-0.02}) \times 10^{17}$</td>
</tr>
<tr>
<td>χ^2/d.o.f.</td>
<td>705/465</td>
<td>698/544</td>
</tr>
</tbody>
</table>

Silicon is overabundant in this and other shrapnels (e.g. G) indicating that they originate in deeper layers of the exploding star.

Note. — Other elements are fixed to those of solar values. The values of abundances are multiples of solar value. The errors are in the range $\Delta \chi^2 < 2.7$ on one parameter.

J. Trümper, Madrid 2019
Mere accident? Indication of a Si-reach bilateral jet of ejecta in the Vela SNR observed with XMM-Newton (Garcia et al 2017)

Summary of over-abundances in shrapnels of the Vela SNR:
A: Carbon, Silicon
G: Neon, Magnesium, Silicon
D: Oxygen, Neon, Magnesium,
That tells us about the depths the shrapnels are coming from

J. Trümper, Madrid 2019
3. The thermally emitting isolated neutron stars (XTINS alias Magnificent Seven) discovered by ROSAT

Compilation by F. Haberl 2018

<table>
<thead>
<tr>
<th>Object</th>
<th>kT_{∞} (eV)</th>
<th>P (s)</th>
<th>p.f. a (%)</th>
<th>\dot{P} (s s$^{-1}$)</th>
<th>B_{dip} (1013 G)</th>
<th>τ (Myr)</th>
<th>t_{kin} (Myr)</th>
<th>m_B^b (mag)</th>
<th>d^c (pc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RX J0420.0–5022</td>
<td>48</td>
<td>3.45</td>
<td>17</td>
<td>-2.8×10^{-14}</td>
<td>1.0</td>
<td>1.95</td>
<td>?</td>
<td>26.6</td>
<td>~345</td>
</tr>
<tr>
<td>RX J0720.4–3125</td>
<td>84–94</td>
<td>16.78</td>
<td>8–15</td>
<td>-1.40×10^{-13}</td>
<td>5.0</td>
<td>1.91</td>
<td>0.85</td>
<td>26.6</td>
<td>286^{+37}_{-23}</td>
</tr>
<tr>
<td>RX J0806.4–4123</td>
<td>95</td>
<td>11.37</td>
<td>6</td>
<td>-5.50×10^{-14}</td>
<td>2.5</td>
<td>3.24</td>
<td>?</td>
<td>>24</td>
<td>~250</td>
</tr>
<tr>
<td>RX J1308.6+2127</td>
<td>100</td>
<td>10.31</td>
<td>18</td>
<td>-1.12×10^{-13}</td>
<td>3.5</td>
<td>1.45</td>
<td>0.55/0.90/1.38</td>
<td>28.4</td>
<td>?</td>
</tr>
<tr>
<td>RX J1605.3+3249</td>
<td>100</td>
<td>?</td>
<td><2</td>
<td>?</td>
<td>?</td>
<td>?</td>
<td>0.45</td>
<td>27.2</td>
<td>~390</td>
</tr>
<tr>
<td>RX J1856.5–3754</td>
<td>61</td>
<td>7.06</td>
<td>1</td>
<td>-2.97×10^{-14}</td>
<td>1.5</td>
<td>3.80</td>
<td>0.42–0.46</td>
<td>25.2</td>
<td>120$^{+11}_{-15}$</td>
</tr>
<tr>
<td>RX J2143.0+0654</td>
<td>104</td>
<td>9.43</td>
<td>4</td>
<td>-4.00×10^{-14}</td>
<td>1.9</td>
<td>3.72</td>
<td>?</td>
<td>>26</td>
<td>~430</td>
</tr>
</tbody>
</table>

For the brightest source RX J856-3754 the distance is known well by HST measurements

Trümper, Burwitz, Haberl, Zavlin 2004:

The neutron star has a small hot polar cap seen in X-rays and a radius $R_{\infty} = 16.8$ km, corresponding to $R \sim 13$ km for $M = 1.4$ M_\odot

This result requires a stiff equation of state of the high density nuclear matter

J. Trümper, Madrid 2019
RX J1856-3754 is one of the calibration sources of XMM-Newton and Chandra.
The diagram shows the stability of the pnCCD over a period of 17 years.
K. Dennerl, V. Burwitz, private communication 2019
A smaller cluster falling into the Coma cluster
Intensity fluctuations at the center are due to previous mergers

J. Trümper, Madrid 2019
XMM-Newton: Turbulence in the Coma galaxy cluster resulting from previous mergers
P. Schuecker, A. Finoguenov, F. Miniati, H. Böhringer & U. Briel 2004

Temperature

Pressure

Pressure map of the inner region

Entropy

Residual substructure

J. Trümper, Madrid 2019
Selection of a representative, volume-limited sample of 93 systems from the clusters found in the ROSAT Survey (z < 0.1)

Detailed, deep study of a cluster sample with XMM-Newton and structural analysis

Statistics of Morphologies

volume –lim. sample:
30% regular
60% disturbed
10% intermed.

Compared to flux-limited (traditional):
41% regular
45% disturbed
(rest intermed.)

Cool-Core-Statistic
vol.-lim.: 39%
flux-lim.: 53 -60%
Planck: 29%

ROSAT and Planck are not so different if compared using similar selection!

J. Trümper, Madrid 2019
5. ROSAT discovery of tidal disruptions by massive black holes

S. Komossa & N. Bade 1999

The X-ray light curves

N. Bade, S. Komossa, M. Dahlem 1996

TDE host galaxy NGC 5905; a very nearby giant barred spiral galaxy.
Circle: ROSAT HRI X-ray error box.

M.J. Rees 1988, 1989

Theoretical prediction
Flows of X-ray gas reveal the disruption of a star by a massive black hole

J.M. Miller, J.S. Kaastra, M.C. Miller and 18 co-authors

In the galaxy PGC 043234

$L_x = 3.2 \times 10^{44} \text{ erg/s}$ (XMM-Newton)

The best-fit photoionized absorption model for the outflowing gas detected in each spectrum is shown in red

Modest outflow speeds of few $\times 100 \text{ km s}^{-1}$ are observed

PGC 043234 was not detected in the ROSAT All Sky Survey:

$L_x < 4.8 \times 10^{40} \text{ erg s}^{-1}$

The gray band depicts the $t^{5/3}$ flux decay predicted by fundamental theory

M.J. Rees 1988

J. Trümper, Madrid 2019
The Future: Lead-up to the third decade of XMM-Newton and to ATHENA

eROSITA on SRG:

Launched in July 2019 on the Russian SRG
- 4 years all-sky survey, sensitivity ~ 20 x ROSAT all sky survey
> 3 years pointed observations

eROSITA with will discover many new sources, which can be studied with the advanced instruments of Athena
- cryogenic X-ray spectrometer X-IFU and
- wide field imager WFI

J. Trümper, Madrid 2019
THANK YOU !