X-Ray Spectrum Analysis I. Low-resolution Spectra

Matteo Guainazzi

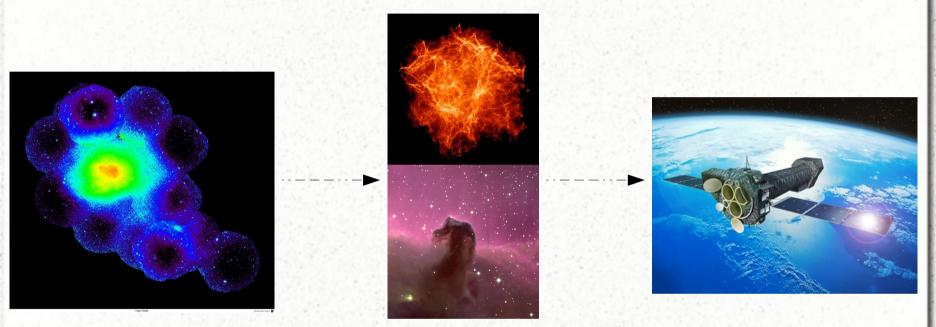
European Space Astronomy Centre European Space Agency Villafranca del Castillo, Spain Matteo.Guainazzi@sciops.esa.int Providing you with a reference for topics relevant to spectroscopy of low-resolution (*i.e.* CCD) spectra:

- How do we fit spectra?
 - [and, by the way, what does it min "fitting a spectrum"?]
- What files do we need? what are they?
- How do we turn the fitting wheel?
- How do we deal with calibration uncertainties?

If I make things too messy, *no panic*! Look at (*e.g.*):

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html

Outline

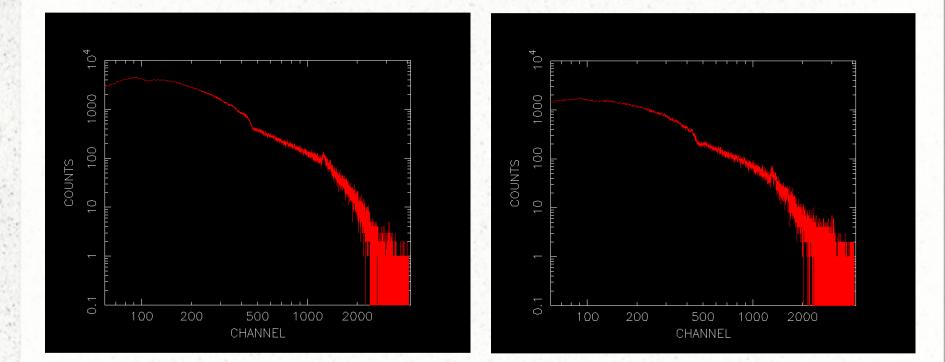

- This talk is primarily intended for users of CCD spectra:
 - ASCA/SIS
 - Chandra/ACIS
 - Swift/XRT
 - Suzaku/XIS
 - XMM-Newton/EPIC (-MOS and -pn)
- However, some basic principles can be applied to instruments with even lower resolution:
 - ROSAT/PSPC, ASCA/GIS, BeppoSAX, RXTE, Suzaku/HXD, NuSTAR ...
- [Bias: Many examples refer to the EPIC cameras, but only because I am paid to ensure that they work ...]

Out ultimate goal is ...

Intrinsic source spectrum s(E) ...

... seen through IGM/ISM absorption a(E) ...

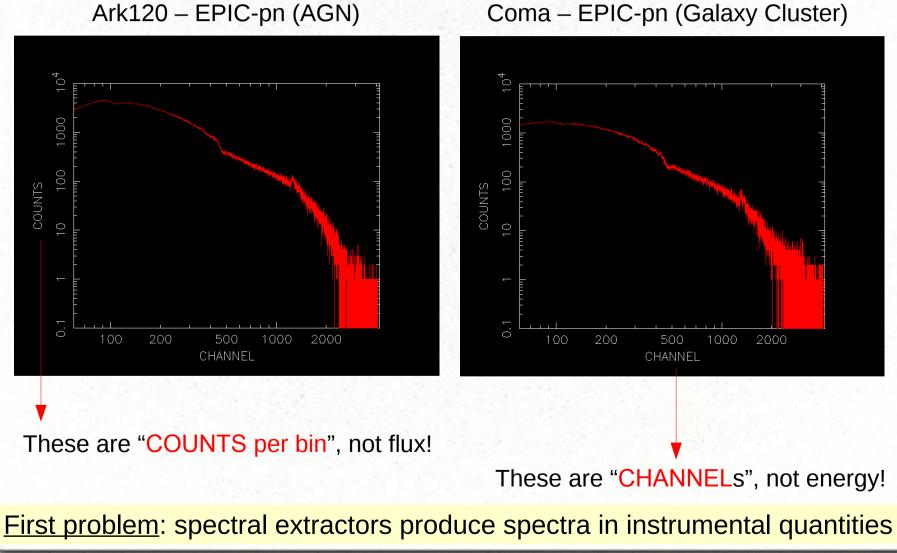
... detected as observed counts C(PHA)



We measure C(PHA). We want to determine S(E) - occasionally A(E). Easy, isn't it?

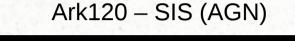
(Coma Cluster as seen by XMM-Newton: courtesy P.Rodriguez-Pascual)

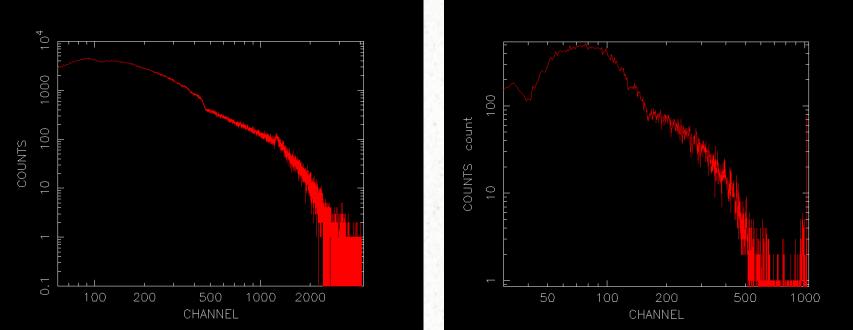
When all candles be out, all cats are grey


CCD spectra extracted by dmextract, xmm/evselect, or xselect look like this:

When all candles be out, all cats are grey

CCD spectra extracted by dmextract, xmm/evselect, or xselect look like this:

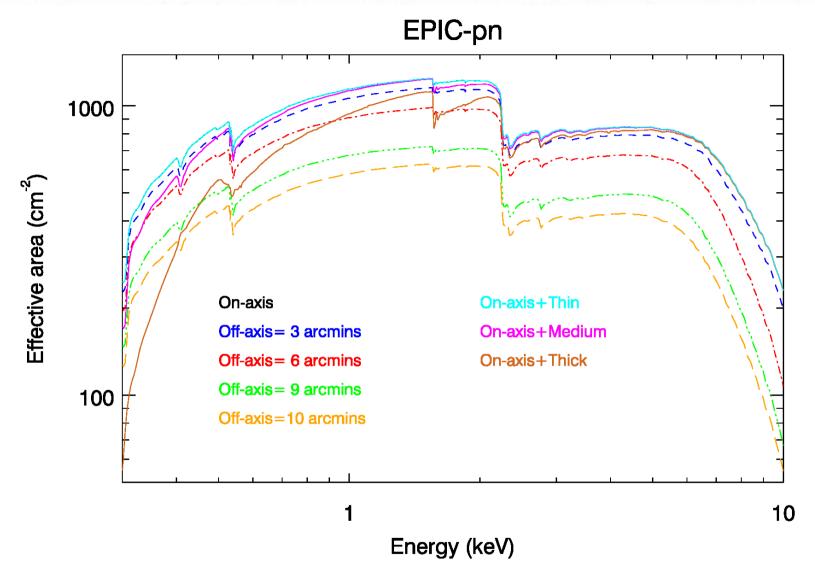

Ark120 - EPIC-pn (AGN)



When all candles be out, all **cats** are grey

"And now, for something completely different: the larch ..." (Monty Python, 1968)

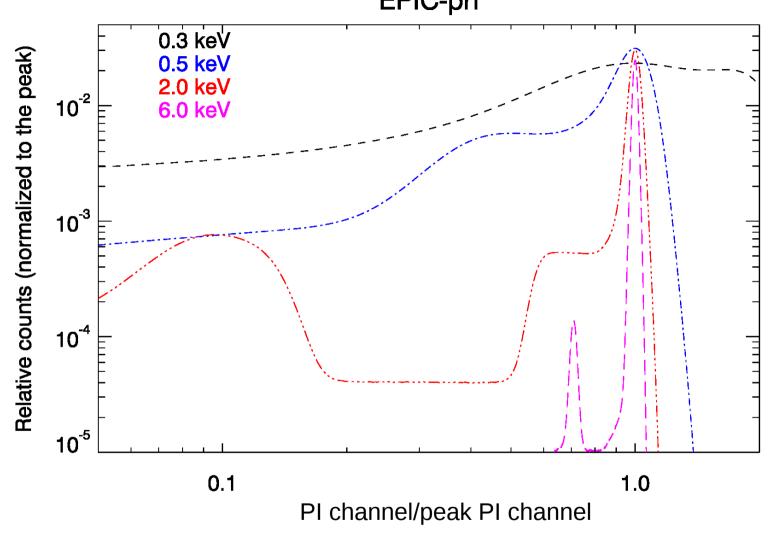
Ark120 - EPIC-pn (AGN)


<u>Second problem</u>: the shape of the count spectra is dominated by the transfer function of the telescope+detector: we must "decode" it

$C(h) = (N\tau) \int dE R(h, E) A(E) s(E)$

- (*N* τ) = exposure time
- *C*(*h*) = observed spectrum, in units of counts per spectral bin
- R(h,E) = redistribution matrix (a.k.a. "RMF file"), typically normalised to 1
- A(E) = effective area (a.k.a. "ARF" or "ancillary file") in units of area
- *s*(*E*) = intrinsic spectrum (to be determined)
- h =spectral channels, in units of *Pulse Height Analysis* (PHA) or *Pulse Invariant*
 - (PI): digital instrumental quantities only loosely related to energy

We would need to invert this equation to get s(E). However, in general this is not possible. Why?


The effective area A(E)

Measure (conventionally expressed in units of "*area*") of the collecting power of telescope+filter+detector. It depends on energy and position ("off-axis")

[Beware: not all observatories carry "optical photon blocking filters"]

Redistribution matrix R(E)

Response of the detector to a monochromatic line. Highly dependent on the energy. The width of the core defines the instrument resolution: $\sigma_{PHA} = [n^2 + fE]^{0.5}$ ($n^2 \rightarrow \text{noise term}$)

EPIC-pn

Inverting the spectral equation?

The redistribution is sampled at discrete spectral channels:

$$R_{hE}^{i} = \frac{\int_{E_{j-1}}^{E_{j}} R(i, E') dE'}{(E_{j} - E_{j-1})}$$

The whole spectra matrix is actually a discrete matrix equation:

$$C_h = T\Sigma_i \Sigma_E R^i_{hE} A^i_E S^i_E dE$$

The cross-talk among different energies prevents the R^{i}_{hE} matrix from being inverted.

<u>Alternative</u>: Forward-folding approach

- 1) Assume a model with its defining parameters
- 2) Define a set of parameter values
- 3) Convolve the model with the instrument response
- 4) Compare the (dis)agreement between the observed spectrum and the folded model through a goodness-of-fit statistical test
- 5) Change the parameter values to minimize the goodness-of-fitness test = fit
- 6) Once the best-fit is found, calculate the confidence intervals on the best-fit parameters

Spectral packages are looping machines through the steps above (+ a few other cosmetic features) The *inevitable background* is due to various component:

- Space environment
- Instrument
- Astrophysical sources

	SOFT PROTONS	INTERNAL (cosmic-ray induced)	ELECTRONIC NOISE	HARD X-RAYS	SOFT X-RAYS
Source	Few x 100 keV solar protons, accelerated by magnetospheric reconnection events. Dominate times of high-BG.	Interaction of High Energy particles (cosmic rays) with detector - associated instrumental fluorescence. <u>Main MOS ref.</u>	 Bright pixels & (parts of) columns. (2) CAMEX readout noise (pn). (3) (4) (5) (6) Artificial Low-E enhancements in outer MOS CCDs (Also dark current - thought negligible). 	X-ray background (AGN etc), <u>Single Reflections</u> from outside FOV, <u>Out-of-time (OOT) events (pn)</u>	Local Bubble, Galactic Disk, Galactic Halo, <u>Solar</u> <u>Wind Charge Exchange (SWCX) SWCX, Single</u> <u>Reflections from outside FOV, Out-of-time (OOT)</u> <u>events (pn)</u>
Variable? (per Observation)	Flares (up to >1000%). Unpredictable. Significant quiescent component (long flares) - survive GTI screening. (<u>Also additional possible 'irreducable'</u> <u>component</u>).	+/-10%. <u>MOS_MOS</u> : >2keV continuum unchanged, small changes in fluorescence lines. <1.5keV continuum varies - may be be due to Al redistribution. <u>pn</u> : Difference between continuum and lines (some correlation).	(1) +/-10%. (2) Very constant. (3) (4) Believed constant.	Constant.	Constant. Long obs. may see effect of <u>SWCX SWCX</u> (e.g. variations at 0.5-1.2 keV [Ovm/Mgx1], but not at 2-4 keV).
Variable? (Obs. to Obs.)	Unpredictable. Affect 30%-40% of time. Flaring SP increasing? Quiescent SP not evolving. More SPs far from apogee. More SPs in winter than in summer. Low-E flares turn on before high-E.	Majority @ +/-15%. Can be x10 higher in high radiation periods. No increase after solar flares. Plus above 'per Observation' variations.	 >1000% (pixels come and go, also [micro-]meteorite damage). Mode-dependent (lowest eFF, then FF, LW, highest SW) (3) effects 5-20+% of obs. (4) effects 20-50% of obs. (factor increases with high-BG rate). (5) (6) >50% of obs for later Revs (Rev1300+) 	Constant. OOT events (pn) mode-dependent (LW:0.16%, FF:6.3%, eFF:2.3%)	Variation with RA/Dec (+/-35%). <u>SWCX SWCX</u> may affect observations differently: <u>OOT</u> events (pn) mode-dependent (LW:0.16%, FF:6.3%, eFF:2.3%)
Spectral	Variable. Unpredictable. Continuum spectrum (no lines), fitted by unfolded xspec PL (<u>double</u> - exponential or broken power law (<u>break energy</u> <u>stable ~3.2 keV</u>)) model for E>0.5keV (E<0.5keV, less flux is seen). <u>Variable in Intensity + shape</u> (higher the intensity. flatter the slope).	Flat (<u>MOS index-0.2</u>) + fluorescence + detector noise. <u>MOS</u> : <u>L5keV AiK</u> , <u>L7keV SiK</u> , <u>22keV Au</u> , <u>Det.noise</u> <u><0.5keV HighE lines</u> (Cr 5.4, <u>Mn S.8 Fex 6.4, Au</u> <u>9.1ke11.4</u>). (<u>Here also</u>) <u>PN: 1.5keV AiK</u> , <u>No Si (self-absorbed</u>). <u>Cu-Ni-Zn-K</u> (<u><8keV</u>). <u>MIP noise</u> <0.3keV.	(1) low-E (<300eV), tail may reach higher-E. (2) low-E (<300eV). (3) (4) low-E (<500eV) (3) High-rate plus soft excess. (5) (6) Strong excess <1000eV.	1.4 power law. Below 5keV, dominates over internal component. Above 5keV, internal component component dominates (in times of low-BG).	Thermal with ~<1keV emission lines. Extragalactic @>0.8keV, index=1.4. Galactic - emission/absorption varies. <u>SWCX SWCX</u> very soft, with unusual Ovni/Ovn line ratios (plus others) - Strong Ovni & Mgxi
Spatial - Vignetted?	Yes (scattered) - <u>Vignetting is flatter than for</u> photons - low-E SPs extremely flat, higher-E SPs steeper (MOS) - pn shows more constant vignetting with energy	No - flat (see below).	(1,2) Bright pixels and CAMEX - No. MOS noise - (3) No/unclear (out-FOV) (see below) (4) Yes - evident in vignetting maps (in-FOV). (similar, smaller-magintude vignetting asymmetries seen in pn). (5) (6)	Yes.	Yes.
Spatial - Structure?	Perhaps, in MOS due to the RGA. No structure seen in pn. <u>SP feature seen in MOS1-CCD2 at</u> <u>low-E.</u> SPs observed only inside FOV.	Yes. Detector + construction. MOS: outer CCDs more Al, less Si. CCD edges more Si. Less Si out-FOV. Continuum diff. hetween out-FOV and in-FOV below Al line (redistribution?). More Au out-FOV, Changes in high-E lines, CCD+to-CCD. line intensity variations, energies/widths stable. (Here also) PN: Line intensities show large spatial variations from electronic board. Central 'hole' in high-E lines (-8keV)., Residual MIP contribution near CAMEX readout (low-E, non-singles, parallel to readout).	 Yes. (1) Individual pixels & columns. (Also [pn] sections of columns away from CAMEX, near to FOV centre) (2) Near pn readout (CAMEX), perpendicular to readout. (3) MOSI CCDs 4 & 5, MOS2 CCDs 2 & 5 - unusual in- & out-FOV differences (esp. MOSI CCD0 4 and spatial inhomogeneities. (4) MOSI CCDs 2 & 5. (5) (6). Lower-level ~persistent low-E enhancement in MOSI CCD2 	No. <u>Single reflections</u> : Diffuse flux from 0.4-1.4 deg (out-FOV) is ~7% of in-FOV signal. <u>Effective area</u> of 1 telescope ~3 sq.cm at 20-80 arcmintes <u>of Faxis</u> , <u>OOT</u> events (pn) smeared along readout from bright sources of X-rays. (extra BG in pn LW mode due to frame store area).	No, apart from real astronomical objects. Exgal.>0.8keV spatially uniform. SWCX SWCX over whole FOV. Single reflections: Diffuse flux from 0.4-1.4 deg (out-FOV) is -7% of in-FOV signal. <u>Effective area</u> of 1 telescope ~3 sqc mat 20-80 arcmintes <u>offaxis</u> . <u>OOT</u> events (pn) smeared along readout from bright sources of X-rays. (extra BG in pn LW mode due to frame store area)
Patterns	Distribution similar to genuine X-rays.	Distribution different from genuine X-rays.	Distribution different from genuine X-rays. (5) MOS E1/E2 connection	Genuine X-ray distribution.	Genuine X-ray distribution.

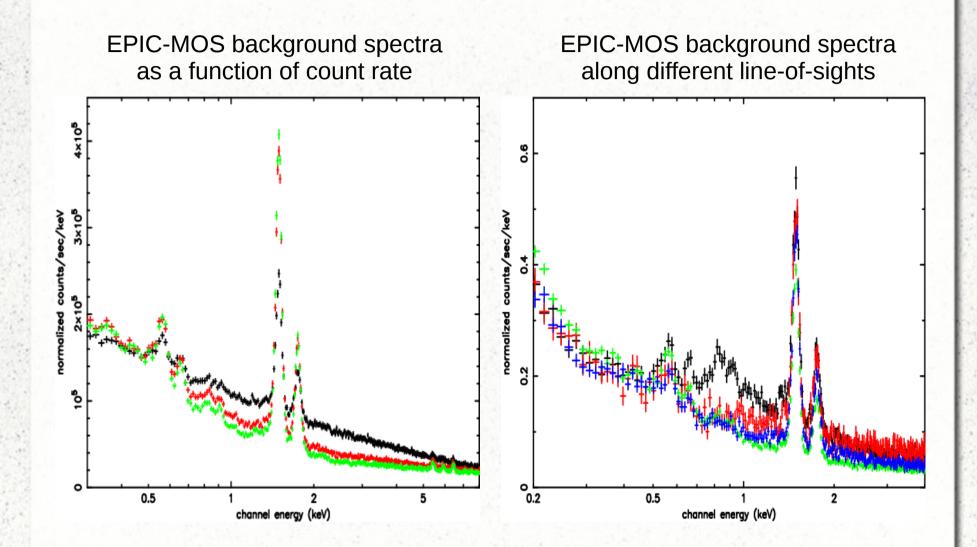
Synopsis of background components in XMM-Newton EPIC

This implies that some components are focused by the telescope. Others aren't

 $C_h = T[\Sigma_i \Sigma_E R_{hE}^i A_E^i (s_E^i + b_E^{i,f}) dE + b_E^{i,u}]$

Three approaches are possible:

• Ignore the background. Wrong, even if in Chandra it is often very low


focused

- <u>Subtract the background</u>. Easy, but:
 - "It reduces the amount of statistical information in the analysis [...]
 - The background subtracted data are not Poisson-distributed;
 - [For example, subtracting a background can give negative counts; this is definitely not Poissonian!

not focused

- Fluctuations, particularly in the vicinity of localized features, can adversely affect analysis"
- <u>Model and fit simultaneously</u> the source and the background. Appealing, but:
 - The background spectra is often awfully complex, time- and detectorposition dependent, sometimes not known at all

Goodness-of-fit statistical tests

(Carter & Read, 2007, A&A, 464, 1155)

Models

Most software packages include the same suite of astrophysical models ($\sim 10^2$):

- Additive:
 - Phenomenological: po, bb, brems, gauss

Comptonization

- Astrophysical: comptt, diskbb, apec, diskline

blackbody

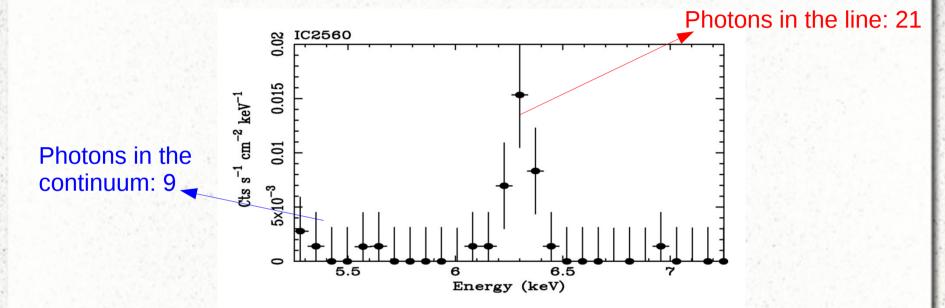
Accretion disk blackbody

Gaussian profile

Relativistic line emission

Thermal plasma

- Multiplicative:
 - Absorption, cut-off ...
- Convolution:
 - Kernels, flux calculation ...
- Mixing
 - Surface brigthness, deprojection ...
- Colleagues in the community contribute their own ("external model"), either as functions or as FITS table
- You can create your own (it does not require a software guru)!


A detour on presentation skills

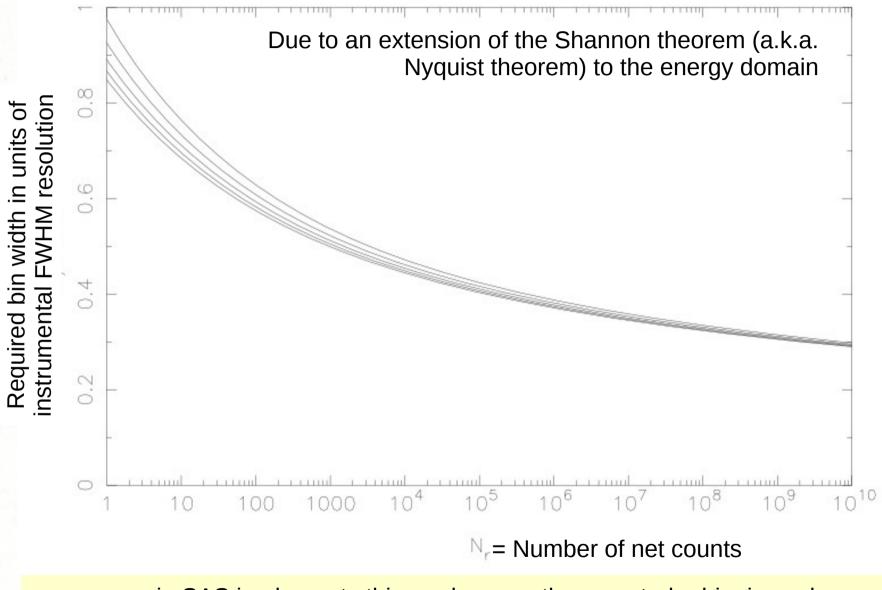
Never write a slide with more words than you can read in 30 seconds

Goodness-of-fit tests

- The most common goodness-of-fit statistics test is the "chi-squared" (χ^2) : $\chi^2 = \sum \frac{(\text{observed - expected})^2}{(\chi^2)^2}$
 - It requires that the distribution of background-subtracted counts in each spectral channel is well approximated by a Gaussian (5-10 counts)
 - Different alternatives for the denominator: the XSPEC default is biased.
 Use weight churazov, Or weight model instead
- Alternatively, one can use the Cash (C-)statistics $C = 2 \sum_{i=1}^{n} s_i N_i + N_i \ln(N_i/s_i)$.
 - Applicable to data following the Poissonian statistics only (i.e.: nonbackground subtracted spectra).
 - XSPEC implements a flavour (the "W-statistics") which can be directly applied to background-subtracted spectra
 - [issue with spectra with very low number of counts: K.Arnaud recommends to rebin the spectra to ensure that each channel has got at least one count – reason unknown]
 - It does not yield a metrics of the absolute quality of a a fit (one need to use Monte-Carlo simulations in this case)
- XSPEC version 12.8 allows you to use different statistics to calculate the best-fit parameters, and the absolute quality of the fit. Recommendations: C-statistics for the former, χ^2 for the latter

 Rebin you spectra is pure evil, and may lead to loss of scientific information:

 However, a minimum level of spectral rebinning is required to avoid oversampling the intrinsic resolution of the instrument Let f(t) be a continuous signal. Let $g(\omega)$ be its Fourier transform, given by


$$g(\omega) = \int_{-\infty}^{\infty} e^{i\omega t} f(t) dt.$$
(1.6)

If $g(\omega) = 0$ for all $|\omega| > W$ for a given frequency W, then f(t) is band-limited, and in that case Shannon has shown that

$$f(t) = f_s(t) \equiv \sum_{n = -\infty}^{\infty} f(n\Delta) \frac{\sin \pi (t/\Delta - n)}{\pi (t/\Delta - n)}.$$
(1.7)

In (1.7), the bin size $\Delta = 1/2W$. Thus, a band-limited signal is completely determined by its values at an equally spaced grid with spacing Δ .

An ideal rebinning strategy

specgroup in SAS implements this, and many other spectral rebinning schemes

(from J.Kaastra's and F.Verbunt's lecture notes on high-energy astrophysics, 2008)

Forward-folding in action

http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecWalkthrough.html