M.Kirsch & M.Guainazzi, "EPIC calibration status", 14th SAS Workshop, 3rd June 2014

EPIC introduction and calibration

Presentation for the XMM-Newton SAS Workshop

(Only slightly modified by M.Guainazzi on the basis of a presentation by) Marcus G. F. Kirsch (ESA)

EPIC calibration status document: http://xmm2.esac.esa.int/docs/documents/CAL-TN-0018.pdf

EPIC hardware features

- 3 independent CCD-cameras (2 MOS & 1 PN), observing simultaneously the same field
 - MOS, 7CCDs, FI
 - PN, 12CCDs, BI
- 3 different light filters for both camera types
- different modes
 - imaging modes to accommodate brightness
 - timing modes time resolution up to 7 µs (PN-Burst)

What is a CCD

- Charge Coupled Device
- You know that from your digital cam or mobile phone
 our CCDs however work also for X-ray photons
- Silicon device to measure photons energy, position and time

M.Kirsch & M.Guainazzi, "EPIC calibration status", 14th SAS Workshop, 3rd June 2014

PN operating modes

MOS operating modes

Full Frame Time Res.: 2.6 s Large Window Time Res: 2.7 s outer CCDs

Small Window Time Res.: 0.9 s central CCD 0.3 s central CCD 2.7 s outer CCDs

Timing Time res. : 1.8 ms central CCD 2.6 s outer CCDs

In MOS the external CCD are always used in the same way!

General truth: each mode can be combined with any of the optical blocking filter: THIN, MEDIUM, THICK

Summary of modes properties

Table 3: Basic numbers for the science modes of EPIC									
MOS (central CCD; pixels) [1 pixel =Time1.1"]resolution		Live time ¹ [%]	Max. count rate ² diffuse ³ (total) [s ⁻¹]	Max. count rate² (flux) point source [s -¹] ([mCrab] ⁴)					
Full frame (600 × 600)	2.6 s	100.0	150	0.70 (0.24)					
Large window (300 × 300)	0.9 s	99.5	110	1.8 (0.6)					
Small window (100 × 100)	0.3 s	97.5	37	5 (1.7)					
Timing uncompressed (100 × 600)	1.75 ms	100.0	N/A	100 (35)					
pn (array or 1 CCD; pixels) [1 pixel = Time L 4.1"] Time L		Live time ¹ [%]	Max. count rate ² diffuse ³ (total) [s ⁻¹]	Max. count rate² (flux) point source [s ⁻¹] ([mCrab]⁴)					
Full frame ⁵ (376×384)	73.4 ms	99.9	1000(total)	6 (0.7)					
Extended full frame ^{5,6} (376×384)	199.1 ms	100.0	370	2 (0.25)					
Large window (198 × 384)	47.7 ms	94.9	1500	10 (1.1)					
Small window (63 × 64)	5.7 ms	71.0	12000	100 (11)					
Timing (64 × 200)	0.03 ms	99.5	N/A	800 (85)					
Burst (64 × 180)	7 μs	3.0	N/A	60000 (6300)					

This table is extracted from the source of any wisdom as far as XMM-Newton instruments are concerned: the XMM-Newton Users Handbook

http://xmm.esac.esa.int/external/xmm_user_support/documentation/uhb/index.html

What is eventually calibration?

In X-ray astronomy we are measuring individual photons

• Where are the photons coming from?

- How many?
- Which "sort" (energy) of photons?
- When do the photons arrive?
- What is source and what is background?

[Marcus Kirsch]

Calibration topics

 Astrometry^{where} Effective area

- Energy redistribution which Gain/CTI
- Timing^{when}
- Background

<u>Astrometry</u>

esa ESAC EPIC

- Definition: The precision with which astronomical coordinates can be assigned to source images in the EPIC focal plane.
- Relative astrometry within each camera is accurate to better than 1-2 arcsec for all cameras and the full FOV
- Absolute astrometry now limited only by S/C attitude accuracy: 2 arcsec

Point Spread Function:

Definition: spatial distribution of light in the focal plane in response to an observed (monochromatic) point source. The PSF integrates to 1 over the infinite focal plane.

The default model (ELLBETA) is derived from the analysis of a stack of a large number of sources for different off-axis angles and energies. For more details: **Read et al., 2011, A&A, 534, 34** M.Kirsch & M.Guainazzi, "EPIC calibration status", 14th SAS Workshop, 3rd June 2014

Effective area

- Def.: the effective is the collecting area of the optical elements and detector system of the EPIC cameras as a function of energy.
- 1. Collecting area of mirror
- 2. Filter transmission
- 3. Quantum Efficiency of CCDs
- 4. Vignetting (shadowing)

Effective area calibration accuracy

Summed (=stacked) residuals on a large sample of non-thermal AGN, each fit with its own best-fit model

Definition: The energy profile recorded by the detector system in response to a monochromatic input.

- Mode/time dependent different redistribution matrices required
- Difficult to measure at low energy (large interplay between redistribution and efficiency) – this limit the calibrated energy band-pass to ≥300 eV

Instrument stability

EPIC-pn

EPIC-MOS

The difference in count rate among the MOS spectra is due to the time variability of the redistribution, which is *also* position dependent – SAS takes care of that (talk by Saxton)!

Camera	Mode		no X-ray 1				
		singles	doubles	triples	quadruples	higher	
MOS	imaging	0	1-4	5-8	9-12	13 - 25	$26-31^2$
	timing	0	1				$2,\!3$
pn	imaging	0	1-4	5 - 8	9-12		> 12
	timing	0	1-4			5 - 12	> 12

M.Kirsch & M.Guainazzi, "EPIC calibration status", 14th SAS Workshop, 3rd June 2014

<u>CTI & Gain</u>

- CTI (*Charge Transfer Inefficiency*) is the imperfect transfer of charge as it is transported through the CCD to the output amplifiers during read-out.
- Gain is the conversion (amplification) of the charge signal deposited by a detected photon, from ADU (Analogue to digital unit) charge into energy (electron-volts).

- Gain/CTI are well known so that line energies can be determined with ±10 eV in imaging modes under normal conditions
- Accuracy of energy determination is poorer in Timing Modes: ±20-30 eV
- MOS: CTI correction implemented in order to take energy degradation into account
- Gain / CTI long term monitoring provided by regular internal calibration source observations.

M.Kirsch & M.Guainazzi, "EPIC calibration status", 14th SAS Workshop, 3rd June 2014

<u>Timing</u>

- XMM-Newton allows :
 - pulse analysis
 - pulse-phase resolved spectral analysis for ms pulsars

Absolute accuracy: 70 μs

XMM-Newton revolution 500 1000 1500 2000 2500 6.10 4•10-8 2.10-8 **∆**P/P -2•10-8 -4•10-8 Unknow -6•10 0 1000 2000 3000 4000 5000 6000 Epoch [MJD-51000]

292

EPIC-pn is the fastest X-ray CCD available at the moment

Background

- Low energy electronic noise
- Soft proton "flares"
 - energy shape varying from flare to flare
 - for weak sources only solution: select quiet time periods
- Quiet time high energy proton induced
 - directly in the CCD
 - indirectly via fluorescent lines (strong metal line features make background subtraction complex especially for large clusters & radial temperature determination)
- Astrophysical background

Cross-calibration

Flux ratios (as of SASv13)

- RGS/pn (<0.54 keV) ≅ 1.07
- RGS/pn (≥0.54 keV) ≅ 1.00
- MOS/pn (<0.54 keV) ≅ 0.95
- MOS/pn (≥0.54 keV) ≅ 1.05-.10
- MOS1/MOS2 ≅ 1.00
- Typical σ ≅ 0.03-0.05

For XMM-Newton versus other missions cross-calibration, look at: http://web.mit.edu/iachec/papers/index.htm l

[*I have a slide on this topic, but it takes further 5 minutes* ...]

Calibration summary

Effect	Max. Error	Energy dependent	Off axis angle dependent				
Relative Astrometry	1.2"(r.m.s.)	NO	YES				
Absolute Astrometry	1.5"	NO	YES				
PSF	2 %	YES	YES				
Relative Effective Area	± 5 %	YES	YES				
Absolute Effective Area	±15 %	YES	YES				
Line Energies	± 10 eV	YES	YES				
Relative Timing	$\Delta P/P=2 \times 10^{-9}$	NO	NO				
Absolute Timing	70 µs	NO	NO				

e[mp]proc

- Meta task to process MOS and/or pn data
- It generates calibrated, possibly filtered event lists
- User remains in control data screening
- How to run it:
 - emproc (MOS)
 - epproc (pn)
 - GUI →
- A pair of Perl scripts doing exactly the same job (no GUI):
 - emchain
 - epchain

		epr			epproc 🗙							
Data Processing	Good Time Inte	Data Processing	Good Time Intervals	/als	Attitude and sky coordinates	/als	Attitude and sky coordinate	s Fi	ilter and M	erge Bad	Pixels	Details
_ l selectccds		runhkgtigen_			filterevents	e	pevents					
ccd1	n	Advanced Setti	ngs	fil	terexpression (PI		randomizeposition			yes		_
ccd2	n	withparam	eters	fla	agfilteredevents		randomizeenergy			yes		-
ccd3	n	parameters		run	atimerae		gainctiaccuracy	2				
ccd4	n	except		apr			reemissionthresh	0				
ccd5	n	withoverric	eparameters	run	evlistcomb	,	withoutoftime			no		_
ccd6	n	overridepara	meters	E	runepexposure	1	mappatterntype	sssd				
selectmodes			,	ra	ndomizetime		withtempcorrection			yes		-
imaging		_ withgtiset				e	pframes					
timing		gtiset	gti.ds				wrongpixlimit	20				
timingsrcpositio	n 1						mipthreshold	3000				
_ → withsrccoord	ds						mipmethod			onboard		_
srcra							mipdist			no		_
srcdec							mipdiscard			yes		_
							setupbpx			nom3		
timingsrcpositio	n 1						lowerthreshold	20				
J withsrccoord	ds					_	runepreject					
srcra							badcolumnset	badco	lumns.tab			
srcdec							sigma	4				
							withoffsetmap					
uithinstexpids							noiseparameters	0.98 1	11111	111111		
instexpids							withsoftflarescreening					
removetemporarie	s						softflarethreshold?	10				
removeintermedia	tegtis						softflareemeeth	POV				
removeintermedia	teeventlists						softflareenergyrange	40.50				
deleteexposurecol	umns						softflaresmoothparams	2 1 1				
,							ormaresmoothparams p	211				
						S	SciSim					
						Ľ	analyzingSciSimdata			no		
								[Run	Cancel	Save	Defaults

Default or not default?

- Exposure selection
 - by default all imaging and timing exposures are processed
 - selection of data modes to be processed
 - imaging
 - timing
 - burst \rightarrow epproc burst=YES
 - exposures to process can be selected individually via strings: epproc withinstexpids=yes instexpids='PNS001'
- Attitude and housekeeping, GTI
 - atthkgen is run by the procs
 - it produces a FITS file containing the entire attitude information for a complete observation
 - hkgtigen is run by the procs
 - It filters the event lists according to housekeeping parameters

Bad pixels

- <u>Dead pixel</u>: no events are detected
- <u>Hot pixel</u>: pixel "produces" ghost events very often
- By default the procs will try to detect bad pixels for any imaging exposure.
- The new bad pixels are then used in the data reduction together with any others known (via the calibration files) bad pixels
- You may see "holes" and "dark columns" in your science images. SAS corrects flux, effective area ... due to their presence

<u>Data filtering</u>

- By default the event lists are filtered means that the filtered events are removed
- The filter expression can be controlled by the user
 - flagfilteredevents == true
 - In this case all events are retained, and a flag column will be set to indicate what events would have been removed.
- Flagged events can be removed at a later stage via, e.g., fselect (LHEASOFT)

ADDITIONAL MATERIAL

XMM-Newton Marcus Kirsch Science Operations & Data Systems Division Research & Scientific Support Department

Page 25

Summary of 2011 IACHEC status

• 2-10 keV

- <u>Cluster temperatures</u>: consistent between ACIS, EPIC-MOS, EPIC-pn, XIS
 - Slight inconsistency (5%) among the XIS units
- <u>Power-law indices in G21.5-0.9</u>: if ACIS is the reference:
 - XRT, MOS1, pn: ≥ Γ_{ACIS} -0.05; XIS, MOS2: ≤ Γ_{ACIS} +0.05
- <u>Fluxes</u>: If EPIC-MOS=1
 - EPIC-pn≅0.95-0.90; ACIS≅1.05-1.10 (also with L-HETG); HRCS-LEGS≅1.05; 0.95≤XISi≤1.05

0.5-10 keV

- If EPIC-pn is the reference (T_{pn} =temperature measured in the 0.5-7 keV)
 - T_{ACIS} ≤ 1.2 T_{pn} ; T_{XIS0} ≤ 0.9 T_{pn} ; T_{XIS1-3} ≤ 1.2 T_{pn}
 - Relative ACIS to EPIC-pn difference @0.5 keV respect to @2 keV 10%
- $\pm 10\%$ agreement between XMM-Newton and Chandra gratings

Example: epproc

EPIC ESAC

esa

- epframes to process a CCD, exposure and datamode specific ODF file, creating the output raw event list and GTI data set
- **badpixfind** to find new bad pixels
- badpix to process the raw event list, adding the BADPIX extension
- **epevents** to process the event list file, flagging trailing events, performing split events pattern recognition CTI and gain correction to create the calibrated event list
- **attcalc** to calculate the X and Y sky coordinates.
- **evlistcomb**, the CCD specific data sets are merged into a single event list.