An introduction to XMM-Newton data analysis and the SAS grand-scheme

Matteo Guainazzi

XMM-Newton Science Operations Centre

European Space Astronomy Centre

Villafranca del Castillo, Spain

Outline

- Basic principles of X-ray astronomy
- SAS grand-scheme
- Introduction to X-ray spectroscopy
- What you should do even before you install the SAS

Matteo Guainazzi, "Introduction to SAS" - 14th ESAC SAS Workshop - 2th June 2014

Basics of X-ray analysis

X-ray detectors are photon-counting → two main consequences:

- X-ray astronomy is an intrinsically Poissonian science
 - Scientific products can have a few or even zero events in large ranges of their parameter spaces
- The "king" in the X-ray realm is the event, characterised by:
 - position on the detector
 - "pulse height", which is related to the X-ray energy of the incoming photon in a complex and generally non-linear way
 - arrival time at the spacecraft
 - event "shape" (used to separate X-ray events from particles)
 - CCD number, and other secondary attributes (you don't generally have to worry about)

Event list

When? Where [position]? Who [energy]? [X-ray or particle]?

	□ TIME	□X	□ Y	□ PHA	□ PI	PATTERN	☐ CCDNR	
	D	J	J	1	1	В	В	
	\$	0.05 ARCSECONDS	0.05 ARCSECONDS	CHAN	CHAN			
1	9.506202266412E+07	23743	21330	423	1447	2	1	
2	9.506202266412E+07	28728	21990	25	98	0	1	
3	9.506202527717E+07	28176	31623	25	97	0	1	
4	9.506202527717E+07	29829	30841	327	1131	0	1	
5	9.506202527717E+07	23686	19319	541	1854	0	1	
6	9.506203046611E+07	25510	32711	1810	6171	0	1	
7	9.506203566620E+07	29814	28823	102	360	0	1	
8	9.506203826626E+07	26635	30601	2062	7028	0	1	
9	9.506204346625E+07	26429	20314	443	1519	4	1	
10	9.506204606629E+07	20691	28728	1608	5471	3	1	
11	9.506204606629E+07	27989	29777	202	700	0	1	
12	9.506204606629E+07	21937	25667	117	402	2	1	
13	9.506204866632E+07	28132	32491	462	1589	0	1	
14	9.506204866632E+07	27204	29741	904	3095	0	1	
15	9.506205126638E+07	22124	20257	290	994	0	1	
16	9.506205906643E+07	23193	18795	1398	4771	0	1	
17	9.506206166646E+07	23224	19326	276	950	0	1	
18	9.506206946653E+07	27755	28979	183	637	0	1	
19	9.506207206939E+07	22533	29563	33	118	0	1	

The FITS format

- Almost all XMM-Newton data are in FITS (Flexible Image Transport System) - standard format for astronomical images since the 80s and the documents of the Vatican Library since 2011
- FITS files are constituted by extensions
- Each extension contains a header (list of readable strings) and a binary data block, either as an image or as a table (e.g.: EVENTS)
- For historical reasons, the first block (PRIMARY) must contain image data, and is frequently left blank

Example of a FITS header (event list)

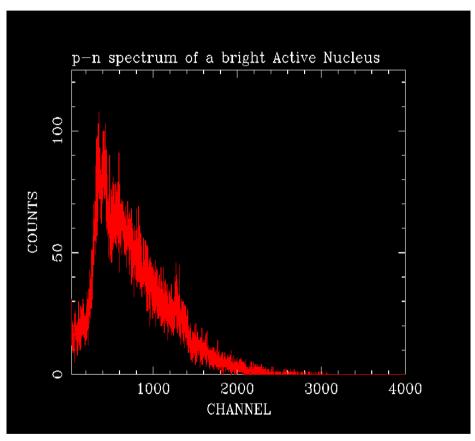
```
/ binarv table extension
   8 / 8-bit bytes
   2 / 2-dimensional binary table
   18 / width of table in bytes
42549 / number of rows in table
   0 / size of special data area
    1 / one data group (required keyword)
    9 / number of fields in each row
      / Extension name
    1 / Extension Version
      / XMM mission
      / EPIC MOS Instrument
      / Type of data
      / Observation Identifier
      / Exposure Identifier
    1 / Numerical identifier of the CCD
   0 / X-Coordinate of bottom left corner of window
   0 / Y-Coordinate of bottom left corner of window
  610 / Size, along x-axis, of window
  602 / Size, along y-axis, of window
   0 / EDU Identifier
    3 / EDU Mode
   25 / EDU Threshold
   26 / Frame Integration Time
   0 / EMDH Lower Threshold
4095 / EMDH Upper Threshold
```

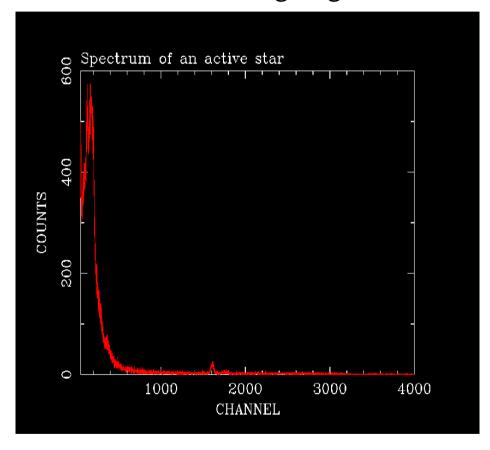
To work with FITS: LHEASOFT (a.k.a. FTOOLS):

http://heasarc.gsfc.nasa.gov/ftools/

Science as projection

The X-ray scientific products can be seen as *projections* onto the sub-spaces defined by the event physical quantities

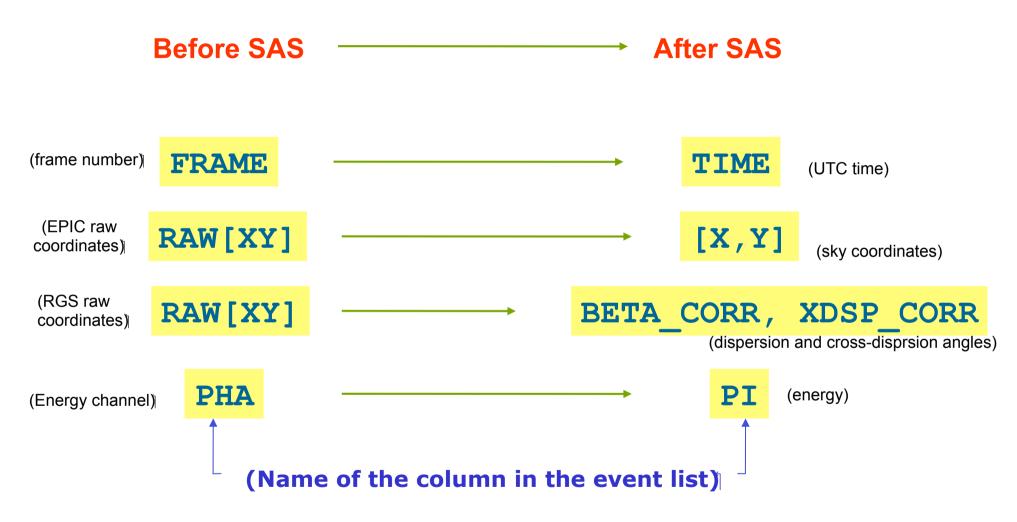

- By collapsing time and space, one gets an energy distribution function (spectrum) in units of counts per energy bin
- By collapsing time and energy, one gets a 2-D image in units of counts per pixel
- By collapsing space and energy, one gets an intensity time series in units of counts per time bin


These scientific products are expressed in units that are indirectly related to the intrinsic properties of celestial sources

Transfer function

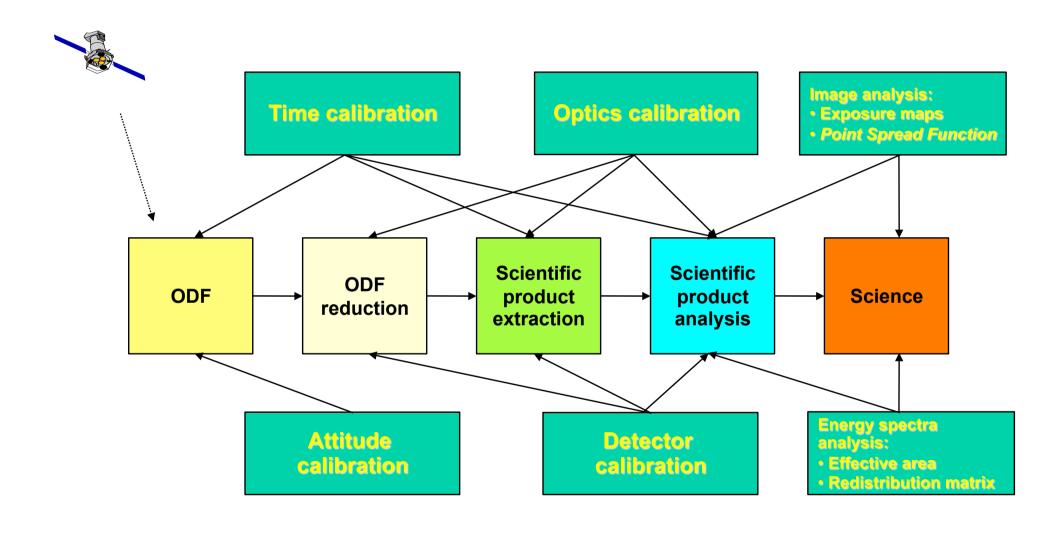
When all candles be out, all cats be gray.

SAS scope

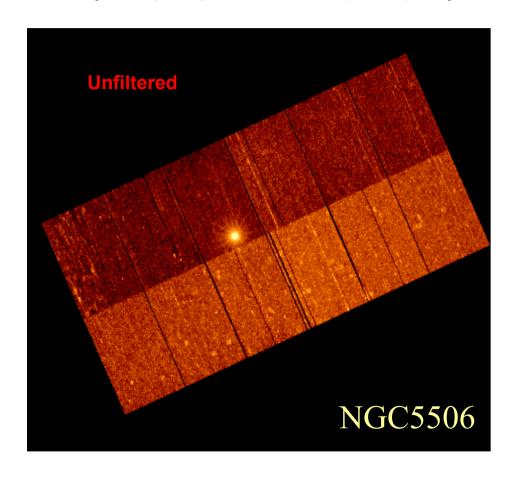

SAS makes two things for you, which no other software can do

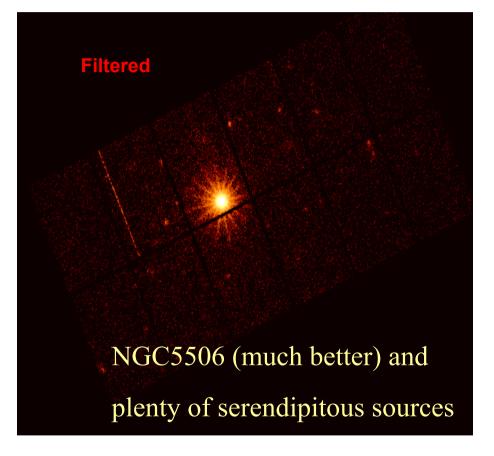
- Apply all the transformations, which allow to convert instrument into physical quantities (whence astrophysical quantities can be derived) → CALIBRATION
- Optimally screen the data (remove noise, keep source signal only)

Matteo Guainazzi, "Introduction to SAS" - 14th ESAC SAS Workshop - 2th June 2014

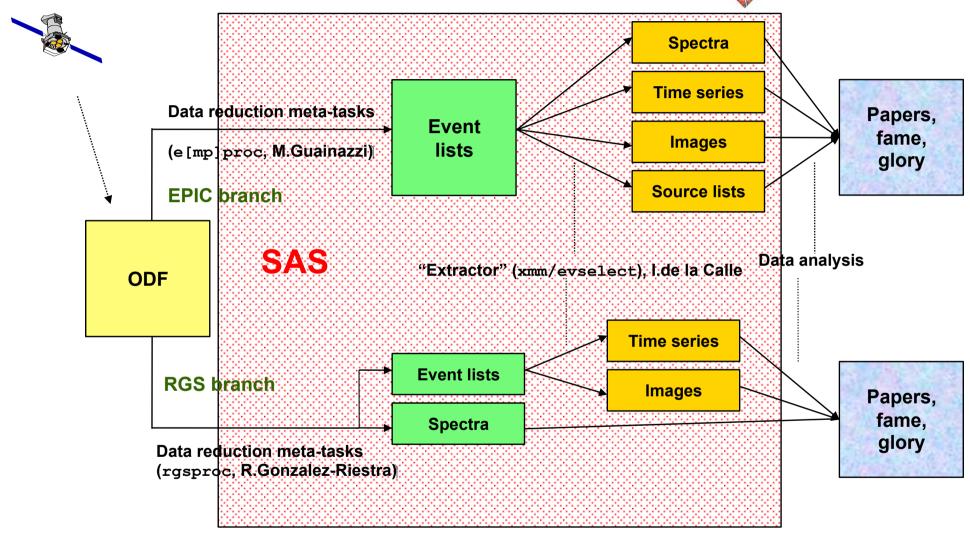

In practical terms ...

Removing transfer function = calibration





Importance of data screening


Not only the *quality* but also the *quantity* of you X-ray science depend on efficiently removing noise

XMM-Newton grand-scheme

What I need to do ...

... before starting analysing data of an XMM-Newton observation:

1. Know the systematic uncertainties of your instruments

- Instrument calibration status reports (see talks by M.Guainazzi, R.Gonzalez-Riestra, J.U.Ness)
- SAS Science Validation Reports (see talk by C.Gabriel)
- Current Calibration File (CCF) Release Notes (see talk by C.Gabriel)

2. Make sure that you are using the latest calibrations

- Install an automatic mirror of the calibration files (e.g., rsync)
- Reduce the data again if you are unsure on the calibrations on which your data were reduced.
 Always stay on the safe side!

3. Make sure that SAS does not surprise you

- Check the SAS "watchout and evergreen" SAS pages, which contain known caveats or bugs.
- Make use the threads (see E.Ojero's talk), would you like to learn something new

4. If everything else fails ...

Contact the HelpDesk: xmmhelp@xmm.esac.esa.int

To know more

- What is SAS: http://xmm.esac.esa.int/sas/current/documentation/sas_concise.shtml
- FITS data format: http://heasarc.nasa.gov/docs/heasarc/fits.html
- XMM-Newton calibration portal: http://xmm2.esac.esa.int/external/xmm_sw_cal/calib/index.shtml
- Basics of spectral fitting: http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html
- SAS watchout: http://xmm.esac.esa.int/sas/current/watchout/
- XMM-Newton HelpDesk: http://xmm.esac.esa.int/external/xmm_user_support/helpdesk.shtml