Spectral Analysis \& Statistics

Presentation for $13^{\text {th }}$ ESAC SAS Workshop

$12^{\text {th }}$ June 2013

Norbert Schartel

(XMM-Newton Project Scientist)

XMM-Newton Science Operation Centre, ESAC, ESA, 28691 Villanueva de la Cañada, Spain

Overview

1. Ideal experiment / X-ray Astrophysics
2. Spectral analysis
3. Questions to be answered by the spectra
4. Statistical tests
5. The large view
6. Golden rules of statistics

XMM-Newton

Ideal Experiment

- expected spectrum: either from theory or short test measurement
- resolution of detector >> intrinsic line-width
- effective area: known per resolution element
- background: either known or short test measurement
- optimization of experiment:
- exposure time per resolution element: such that constant signal/noise ratio is expected

X-ray Astrophysics

- spectrum and flux:
- resolution vs. line-with:
- background:
- observation optimization:
- only partly possible
- not well known in advance and variable
- $p n<\operatorname{MOS} \ll$ RGS
- in general:
- line-width < resolution,
- redistribution sufficient accuracy to plan observation accurate
- generally not known with
and variable
-

XMM-Newton

Ideal Experiment

- reconstruction of spectrum:
- data [counts]:
- Y1, Y2, Y3, Y4 Y2000
- effective area:
- a1, a2, a3, a4a2000
- exposure time:
- t1, t2, t3 ..t2000
- spectra [photons/sec/cm²]:
- f1=Y1/t1/a1 + $0 \times$ Y2 1 t1/a1
- f2=Y2l t2l a2 + $0 \times$ Y1/t1 ..
- f3 $=\mathrm{Y} 3 / \mathrm{t} 3 / \mathrm{a} 3+0 \times \mathrm{Y} 1 / \ldots$.
- start with the spectrum:
- input spectrum [photons/sec]:
- P1(E1), P2(E2), P3, P4 ...
- registered with a certain probability: effective area - a1x t1, a2 x t2, ...
- redistributed with respect of counts channels:
- $\mathrm{Y} 1(\mathrm{e} 1)=\mathrm{P} 1(\mathrm{E} 1) \times \mathrm{a}(\mathrm{E} 1) \times \mathrm{t}(\mathrm{E} 1)$

$$
\text { + P2(E2) } \times 0
$$

X-ray Astrophysics

- reconstruction of spectrum:
- data [counts]:
- Y1, Y2, Y3, Y4 Y2000
- effective area [cm2]:
- a1, a2, a3, a4a2000
- exposure time:
- t1, t2, t3 ..t2000
- spectra [photons/sec/cm²]:
- f1=Y1/t1/a1 + b x Y2/ t1/a1
- f2=Y2l t2la2 + c x Y1/t1 ..
$-\mathrm{f} 3=\mathrm{Y} 3 / \mathrm{t} 3 / \mathrm{a} 3+\mathrm{c} \times \mathrm{Y} 1 / \ldots$.
- start with the spectrum:
- input spectrum [photons/sec/cm ${ }^{2}$]: - f1(E1), f2(E2), f3, f4 ...
- registered with a certain probability: effective area
- a1x t1, a2 x t2,
- redistributed with respect of counts channels:
- $Y 1(e 1)=f 1(E 1) \times$ a1(E1) $\times \mathrm{t} 1(E 1)$

$$
+ \text { P2(E2) } \times \text { b }
$$

X-ray Astrophysics

reconstruction of spectrum:

- asta [counts]:
- Y1, Y2, Y3, Y4 2000
- effectiv area [cm ${ }^{2}$]:
- a1, a2 a3, a,a2000
- exposure tir 10
- t1, t2, 3 ..t2,00
- spect/a[counts/secicm ${ }^{2}$]:
$-1=\mathrm{Y} 1 / \mathrm{t} 1 / \mathrm{a} 1+\mathrm{b} \times \mathrm{Y} 2 /$ t1/a1
f2=Y2/ t2/ a2 + c x Y1/t...
- f3=Y3l t3/ a3 + c x Y1/....
- start with the spectrum:
- input spectrum [photons/sec/cm ${ }^{2}$]:
- P1(E1), P2(E2), P3, P4 ...
- registered with a certain probability: effective area
- a1x t1, a2 x t2, a3, a3
- redistributed with respect of counts channels:
- $\quad \mathrm{Y} 1(\mathrm{e} 1)=\mathrm{P} 1(\mathrm{E} 1) \times \mathrm{a1}(\mathrm{E} 1) \times \mathrm{t1}(\mathrm{E} 1)$ + P2(E2) X b

Redistribution and Resolution

- the channels in the spectra reflect a purely mathematical sorting
- a count in a channel, which corresponds to an energy k, can not be identified with a photon of energy k
- physical sampling, "real" channels, "independent bins", resolution:
- simplest case: (Abbe, 1820-1830) what is the minimum distance between two point which can be resolved with a given resolution?
- today more complex: Shannon information theorem, Nyquist criteria
- information content of a given spectra does not increase if the sampling goes below FWHM/3
- most of the spectra provided in X-ray missions are over-sample

Concept Of Spectral Analysis

1. physically motivated model spectra which is a function of parameters ($\mathrm{x} 1, \mathrm{x} 2 . . \mathrm{xi}$) and energy (e1, e2,..)

- Example:
- thermal emission of a blackbody (BB),
- with parameters: temperature (T) and norm (N)
- BB(T,N, $\left.\mathrm{e}_{\mathrm{i}}\right)$

2. multiplication with effective area ($\mathrm{a} 1, \mathrm{a} 2, \ldots$): expected flux (f) as function of energy and model

- $F\left(B B(T, N), e_{i}\right)=B B\left(T, N, e_{j}\right) * a_{i j},\left(i=j a_{i j}=k_{j}, I \operatorname{not}_{j} a_{i j}=0\right)$

3. folding with redistribution matrix (Detector Response Matrix (bij)) and multiplication with exposure time (t): counts as function of channel (ki) and model:

- counts $\left(\mathrm{C}_{\mathrm{j}}\right)=\mathrm{F}\left(\mathrm{BB}(\mathrm{T}, \mathrm{N}), \mathrm{e}_{\mathrm{i}}\right)^{*} \mathrm{~b}_{\mathrm{ij}}$

4. statistical analysis

- is model true?
- hypothesis tests
- can the description of the spectra be improved?
- new loop with changed parameter of model

Standard Questions

- given a data set the most common questions are:
- distributions
- 50 counts are measured. What is there distribution?
- hypothesis test:
- ASCA showed a power law with $\Gamma=2.1$ and flux $=1.5 \rightarrow$ does this model describe the pn data?
- estimate of parameters:
- the data can be described with a power law. What is the index and the normalization?
- estimate of confidence level:
- what is the error of the power law and what is the error of the normalization?
- hypothesis test:
- comparison between two fits:
- is a power-law or a power-law + emission line a better description of the data

Statistical Methods

- statistical methods to answer the questions (provided in xspec):

- distributions

- Poisson distribution versus binomial distribution
- hypothesis test:
- χ^{2} hypothesis test
- estimate of parameters
- modified minimum χ^{2} method
- minimize C value (C-statistics)
- estimate of confidence level
- determine parameter for $\chi^{2}=\chi^{2}$ minimum $+\Delta \chi^{2}$
- comparison between two fits
- F-test
esa

Comments to Distributions I: OM

- Kuin \& Rosen, 2008, MNRAS 383, 383
- Fordham et al., 2000, MNRAS 312, 83

XMM-Newton

Norbert Schartel

Comments to Distributions II: RGS

Relative contribution per wavelength bin to the reduced X 2. Calculated and shown is the ratio $\operatorname{Var}[\mathrm{Yi}] / E[Y i]$ (see text). The thick line is a lowresolution spline approximation showing the trends in the average value. (From Kaastra, J. S. et, al., 2011, A\&A 534, A37)

- J. S. Kaastra et al. 2011, A\&A 534, A37
- Study of 600 ks RGS spectrum of Mrk 509 with excellent quality
- Fluxed Spectrum:
> 400 coutns per bin
Expectaion: reduced $\mathrm{x} 2 \gg 1$
But: reduced $\mathrm{X} 2 \approx 0.6$
\rightarrow Counts are not X^{2} distributed
\Rightarrow use rescaled X^{2}
\rightarrow Small number of counts in fluxed RGS spectra do follow the C-statistic

Statistical Functions

- χ^{2} is defined as: $\chi^{2}=\Sigma\left(\mathrm{Ym}-\mathrm{Ye}_{\mathrm{e}}{ }^{2} l(\mathrm{Ye})\right.$
- for $n \rightarrow \infty$
- and requires:
- Gaussian errors of individual data points
- independence of data poìnts
- modified χ^{2} is defined as: $\chi^{2} \bmod =\Sigma\left(Y_{m}-Y e\right)^{2} l(\Delta Y \mathrm{Y})^{2}$
- assumption for $n \rightarrow \infty \quad \chi^{2} \bmod \rightarrow \chi^{2}$
- only valid if: $\quad(\Delta \mathrm{Ym})^{2} \approx \mathrm{Ye}_{\mathrm{e}}$
- requirements of χ^{2} are fulfilled
- C-statistics is defined as: $C=2 \Sigma(Y e-Y m \ln Y e)$
- W. Cach, 1979, Apj 228, 939
- assumption for $n \rightarrow \infty \quad C \rightarrow \chi^{2}+K$
- Uses:
- Poisson errors of individual data points
- F-test is defined as: $\mathrm{F}=\chi^{2}{ }_{1}{ }^{*}$ d.o.f. ${ }_{2} / \chi^{2}{ }_{2} /$ d.o.f. f_{1}

Independence Of Data Points

- the measurement of each $Y i$ is statistically independent
- but the Yi are correlated (over-sampling in provided spectra, resolution)
- statistically independent but correlated data points
- all (presented) test methods require independent data points
- (small sentence at the beginning of each text book)
- never sample with a bin-size < FWHM/3, this provides
- complete spectral information
- avoids over-sampling

Independence Of Data Points

- example: same spectra, same signal/noise for each bin:

1. sampling without considering the resolution:

- reduced chi-squared $=0.8191388$
- for 3364 degrees of freedom
- null hypothesis probability $=1.00$

2. sampling with bin-size > FWHM/3:

- reduced chì-squared $=1.094959$
- for 138 degrees of freedom
- null hypothesis probability $=0.210$

Asymptotic Distributed

- all quantities used for the statistical analysis, are itself of statistical nature, i.e. they have an error
- example: r.m.s. $\left(\chi^{2}\right)=\sqrt{ }(2($ d.o.f. $))$
- all statistical proofs and theorems are valid for $\mathbf{n} \rightarrow \infty$
- but we have often not an infinite number of counts
- Example:
- χ^{2} tests requires:
- signal to noise ≥ 5 for central Yi and
- signal to noise ≥ 4 for Y1 and Ylast
- number of $Y \geq 5$

esa

Parameter Estimation

- intrinsic correlation between error and data!
- example:
- <Y>=36,
- 10 data points Y1, Y2 ...: 30, 42, 24, 48, 33, 39, 34, 38, 36 , 36
- error of $\mathrm{Y} 1=\sqrt{ } \mathrm{Y} 1$
- mean $Y=360 / 10=36$
- minimum of $\chi^{2}=$?
- minimum of $\chi^{2} \bmod =$?
- minimum of $C=$?

Parameter Estimation

- intrinsic correlation between error and data!
- example:
- $\langle Y>=36$,
- 10 data points Y1, Y2 ...: 30, 42, 24, 48, 33, 39, 34, 38, 36, 36
- Error of Y1 = $\sqrt{ } \mathrm{Y} 1$
- Mean $Y=360 / 10$
$=\quad 36.0$
- Minimum of χ^{2}
$=\quad 36.5$
- Minimum of χ^{2} mod
$=\quad 34.9$
- Minimum of C
$=\quad 36.0$
- Minimum of χ^{2} mod (constant error) $=36.0$

XMM-Newton

Parameter Estimation

Real Example

XMM-Newton

Norbert Schartel

Parameter Estimation

our data show a correlation between data points and their error: $\Delta Y \approx \sqrt{ }(Y)$

bias for parameter estimation!

possible solutions:

- estimator which is independent of error,
- e.g. C-statistics
- ensure, that data points have equal errors,
- e.g. binning with constant signal/noise
the higher the numbers of counts the less important are bias effects!

Estimation Of Errors

- method: search for the value of the parameter which corresponds to a certain confidence level, i.e. $\Delta \chi^{2}$
- example:
- 90 \% confidence level of one interesting parameter =>
- $\Delta \chi^{2}=2.71\left(\chi^{2}=\chi^{2}\right.$ minimum +2.71$)$

Estimation Of Errors

- be careful:
- $\Delta \chi^{2}$ (parameter) is in general not a smooth function with a single minimum
- plot $\Delta \chi^{2}$ as function of the parameter
- the interesting parameter is often not independent from other parameters
- plot two-dimensional $\Delta \chi^{2}$ contours

Hypothesis Test

- Literature: J. Kaastra in X-ray spectroscopy in astrophysics, 1999, p 276
- correct model:
$-\chi^{2}=n-m$ (n : number of data points, m :=number of free parameters
- r.m.s. $\left(\chi^{2}\right)=\sqrt{ }(2(n-m))$
- false model:
$-\chi^{2}=n-m+r$
- r~number of photons (but independent from \mathbf{n})
- rejection of model
$-\chi^{2} \geq n-m+f \sqrt{ }(2(n-m)) \rightarrow r>\sqrt{ }(2(n-m))$

Hypothesis Test

99\% canfidence level for hypathesis rejectian

XMM-Newton

Norbert Schartel

Real Example

XMM-Newton

Norbert Schartel

F-Test

- literature: J. Kaastra in X-ray spectroscopy in astrophysics, 1999, p 276
- F is defined as:
$-\mathrm{F}=\chi^{2}{ }_{1}$ d.o.f ${ }_{2} / \chi^{2}{ }_{2}$ d.o.f. ${ }_{1}$
$-F=\chi^{2}{ }_{1}\left(n-m_{2}\right) / \chi^{2}{ }_{2}\left(n-m_{1}\right)$
- where
- n number of data points
- m number of fitted parameters
- F is a statistical quantity!
- For large n :
- r.m.s (F) $=2 / \sqrt{ }(\mathrm{n})$
$-F=1+\left(r_{1}+r_{2}\right) / n$

F-Test

- Example:
$-r_{1}+r_{2}=15$ (independent from n)
$-m_{1}=3$,
$-m_{2}=6$,
- $\mathrm{n}=40$,
- d.o.f. ${ }_{1}=37, \chi^{2}{ }_{1}=52$, d.o.f. ${ }_{2}=34 \quad \chi_{2}=34$
- R.m.s.(F) $=0.3162$
- Probability of improvement:
- F => 99.951897\%
- F+R.m.s(F) => 99.997780\%
- F-R.M.S(F) $=>$ 98.051537\%
- $n=100$,
- d.o.f. $_{1}=97, \chi_{1}{ }_{1}=112$, d.o.f. ${ }_{2}=94 \chi^{2}=94$
- R.m.s.(F) $=0.2$
- Probability of improvement:
- F => 99.912766\%
- F+R.m.s(F) => 99.999939\%
- F-R.M.S(F) => NO, model 1 is better than model 2

The Large View

Vaughan, S.; Uttley, P., 2008, MNRAS 390, 421

XMM-Newton

Norbert Schartel

Golden Recipe Of The Statistical Analysis

1. golden Recipe of the statistical analysis does not exist.
2. every scientific question is a new statistical challenge and often requires a new concepts
3. In general:
4. never over-sample a spectra
5. a bin-width < $1 / 3$ FWHM does not add any spectral information, but increases the d.o.f.
6. if possible bin with constant signal/noise
7. every spectral analysis requires a new optimal solution depending on the analyzed spectra and on the specific scientific question
esa
XMM-Newton
Norbert Schartel
