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Overview 

1.  Ideal experiment / X-ray Astrophysics 

2.  Spectral analysis 

3.  Questions to be answered by the spectra 

4.  Statistical tests 

5.  The large view  

6. Golden rules of statistics 
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Ideal Experiment  
 

• expected spectrum: either from theory or short test 
measurement  

• resolution of detector >> intrinsic line-width 

• effective area: known per resolution element  

• background: either known or short test measurement 

• optimization of experiment: 
– exposure time per resolution element: such that 

constant signal/noise ratio is expected  
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X-ray Astrophysics 

• spectrum and flux: 

 

• resolution vs. line-with: 
 
 
 

• background: 

 

• observation optimization:  

• generally not known with 
sufficient accuracy to plan 
observation accurate 

• pn  <  MOS  <<  RGS   
– in general:  

• line-width < resolution,  
• redistribution 

• not well known in advance 
and variable 

 

• only partly possible 
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Ideal Experiment  
• reconstruction of spectrum: 

• data [counts]: 
–  Y1, Y2, Y3, Y4 …. Y2000 

• effective area: 
–  a1, a2, a3, a4 ….a2000 

• exposure time:  
– t1, t2, t3 ..t2000 

• spectra [photons/sec/cm²] : 
– f1=Y1/ t1/ a1 + 0 x Y2/ 

t1/a1  
– f2=Y2/ t2/ a2 + 0 x Y1/t1 .. 
– f3=Y3/ t3/ a3 + 0 x Y1/…. 

• start with the spectrum: 

• input spectrum [photons/sec ]: 
– P1(E1),  P2(E2),  P3, P4 … 

• registered with a certain 
probability: effective area  
– a1x t1, a2 x t2, … 

• redistributed with respect of 
counts channels:  

• Y1(e1) = P1(E1) x a1(E1) x t1(E1)  
       + P2(E2) X 0 
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X-ray Astrophysics 
• reconstruction of spectrum: 

• data [counts]: 
–  Y1, Y2, Y3, Y4 …. Y2000 

• effective area [cm2]: 
–  a1, a2, a3, a4 ….a2000 

• exposure time:  
– t1, t2, t3 ..t2000 

• spectra [photons/sec/cm²] : 
– f1=Y1/ t1/ a1 + b x Y2/ 

t1/a1  
– f2=Y2/ t2/ a2 + c x Y1/t1 .. 
– f3=Y3/ t3/ a3 + c x Y1/…. 

• start with the spectrum: 

• input spectrum 
[photons/sec/cm² ]: 
– f1(E1),  f2(E2),  f3, f4 … 

• registered with a certain 
probability: effective area  
– a1x t1, a2 x t2, …. 

• redistributed with respect of 
counts channels:  

• Y1(e1) = f1(E1) x a1(E1) x t1(E1)  
       + P2(E2) X b 
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X-ray Astrophysics 
• reconstruction of spectrum: 

• data [counts]: 
–  Y1, Y2, Y3, Y4 …. Y2000 

• effective area [cm2]: 
–  a1, a2, a3, a4 ….a2000 

• exposure time:  
– t1, t2, t3 ..t2000 

• spectra [counts/sec/cm²] : 
– f1=Y1/ t1/ a1 + b x Y2/ 

t1/a1  
– f2=Y2/ t2/ a2 + c x Y1/t1 .. 
– f3=Y3/ t3/ a3 + c x Y1/…. 

• start with the spectrum: 

• input spectrum 
[photons/sec/cm² ]: 
– P1(E1),  P2(E2),  P3, P4 … 

• registered with a certain 
probability: effective area  
– a1x t1, a2 x t2, a3, a3 

• redistributed with respect of 
counts channels:  

• Y1(e1) = P1(E1) x a1(E1) x t1(E1)  
       + P2(E2) X b …. 
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Redistribution and Resolution 
• the channels in the spectra reflect a purely mathematical sorting 

• a count in a channel, which corresponds to an energy k, can not 
be identified with a photon of energy k 

• physical sampling, “real” channels, “independent bins”, 
resolution: 
– simplest case: (Abbe, 1820-1830) what is the minimum 

distance between two point which can be resolved with a 
given resolution?  

– today more complex: Shannon information theorem, Nyquist 
criteria 

– information content of a given spectra does 
not increase if the sampling goes below  
FWHM/3 

• most of the spectra provided in X-ray missions are over-sample 
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Concept Of Spectral Analysis 
1. physically motivated model spectra which is a function of parameters (x1,x2..xi) and 

energy (e1, e2,..) 
• Example: 

•  thermal emission of a blackbody (BB),  
– with parameters: temperature (T) and norm (N) 

• BB(T,N,ei) 

2. multiplication with effective area (a1, a2, ..): expected flux (f) as function of energy 
and model  
• F (BB(T,N), ei) = BB(T,N,ej) * aij,  (I=j aij = kj, I not j  aij=0) 

3. folding with redistribution matrix (Detector Response Matrix (bij)) and multiplication 
with exposure time (t): counts as function of channel (ki) and model:  
• counts(cj) = F(BB(T,N),ei) * bij 

4. statistical analysis    
• is model true?    

• hypothesis tests 
• can the description of the spectra be improved?  

•  new loop with changed parameter of model 
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Standard Questions  

• given a data set the most common questions are: 
– distributions  

• 50 counts are measured. What is there distribution?  
– hypothesis test: 

• ASCA showed a power law with Γ=2.1 and flux =1.5  
does this model describe the pn data? 

– estimate of parameters: 
• the data can be described with a power law. What is the 

index and the normalization? 
– estimate of confidence level: 

• what is the error of the power law and what is the error of 
the normalization? 

– hypothesis test: 
– comparison between two fits: 

• is a power-law or a power-law + emission line a better 
description of the data 
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Statistical Methods 

• statistical methods to answer the questions 
(provided in xspec): 
– distributions 

• Poisson distribution versus binomial distribution 
– hypothesis test: 

• χ² hypothesis test 
– estimate of parameters 

• modified minimum χ² method  
• minimize C value (C-statistics) 

– estimate of confidence level 
• determine parameter for χ²= χ² minimum +∆ χ²  

– comparison between two fits 
• F-test 
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Comments to Distributions I: OM 

 
 

• Kuin & Rosen, 2008, MNRAS 383, 383 

• Fordham et al., 2000, MNRAS 312, 83 
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Comments to Distributions II: RGS 

 
 

• J. S. Kaastra et al. 2011, A&A 534, A37 

 

• Study of 600 ks RGS spectrum of  Mrk 
509 with excellent quality 

• Fluxed Spectrum: 

> 400 coutns per bin 

Expectaion:  reduced χ2 >> 1 

But:               reduced χ2 ≈ 0.6 

Counts are not χ2 distributed   

           use rescaled χ2  

 Small number of counts in 
fluxed RGS spectra do follow the 
C-statistic  

Relative contribution per wavelength bin to the reduced χ2. Calculated 
and shown is the ratio Var [Yi] /E [Yi] (see text). The thick line is a low-

resolution spline approximation showing the trends in the average 
value. (From Kaastra, J. S. et, al.,  2011, A&A 534, A37) 
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Statistical Functions 
• χ² is defined as:      χ² = Σ (Ym-Ye)²/ (Ye) 

– for n∞  
– and requires: 

• Gaussian errors of individual data points 
• independence of data points  

• modified χ² is defined as:     χ²mod = Σ (Ym-Ye)²/ (∆Ym)² 
– assumption for n∞         χ²mod  χ²  
– only valid if:                       (∆Ym)² ≈ Ye 
– requirements of χ²are fulfilled  

• C-statistics is defined as:    C = 2 Σ(Ye-Ym lnYe) 
– W. Cach, 1979, Apj 228, 939 
– assumption for n∞      C  χ² + K  
– Uses: 

• Poisson errors of individual data points 

• F-test is defined as:  F = χ²1 * d.o.f 2 / χ²2 / d.o.f.1  
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Independence Of Data Points 
– the measurement of each Yi is statistically independent 
– but the Yi are correlated (over-sampling in provided spectra, 

resolution)   

• statistically independent but correlated data points 

• all (presented) test methods require independent data points 
– (small sentence at the beginning of each text book)  

• never sample with a bin-size < FWHM/3, this provides 
– complete spectral information 
– avoids over-sampling 
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Independence Of Data Points 
 

• example: same spectra, same signal/noise for each bin:  

1. sampling without considering the resolution: 
• reduced chi-squared =     0.8191388    
• for   3364 degrees of freedom 
• null hypothesis probability =  1.00 

2.  sampling with bin-size > FWHM/3: 
• reduced chi-squared =      1.094959      
• for    138 degrees of freedom 
• null hypothesis probability = 0.210 
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Asymptotic Distributed … 
 

• all quantities used for the statistical analysis, are itself of 
statistical nature, i.e. they have an error 
– example:  r.m.s.(χ² ) = √(2(d.o.f.)) 

• all statistical proofs and theorems are valid for n∞ 

• but we have often not an infinite number of counts 
– Example:  
– χ² tests requires: 

• signal to noise ≥ 5 for central Yi and  
• signal to noise ≥ 4 for Y1 and Ylast 
• number of Y ≥ 5  
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Parameter Estimation 

• intrinsic correlation between error and data! 

• example:   
• <Y>=36,   
• 10 data points Y1, Y2 …: 30, 42, 24, 48, 33, 39, 34, 38, 36 , 36 
• error of  Y1 = √Y1 

– mean Y = 360 / 10 = 36 
– minimum of χ² = ? 
– minimum of χ²mod = ? 
– minimum of C =? 
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Parameter Estimation 

• intrinsic correlation between error and data! 

• example:   
• <Y>=36,   
• 10 data points Y1, Y2 …: 30, 42, 24, 48, 33, 39, 34, 38, 36, 36 
• Error of  Y1 = √Y1 

– Mean Y = 360 / 10    =  36.0 
– Minimum of χ²     =  36.5 
– Minimum of χ²mod    =  34.9 
– Minimum of C     =  36.0 
– Minimum of χ²mod (constant error)  =  36.0 
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Parameter Estimation 
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Real Example  
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Parameter Estimation 

 our data show a correlation between data points and their 
error:  ∆Y ≈√(Y) 
 

                 bias for parameter estimation! 
    
                       possible solutions: 

- estimator which is independent of error, 
- e.g. C-statistics 

- ensure, that data points have equal errors,  
- e.g. binning with constant signal/noise 

 
the higher the numbers of counts the less                      

important are bias effects! 
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 Estimation Of Errors 

- method: search for the value of the parameter which 
corresponds to a certain confidence level, i.e. ∆ χ²  
- example: 

- 90 % confidence level of one interesting parameter =>  
- ∆ χ² = 2.71 ( χ² = χ²minimum + 2.71)  
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 Estimation Of Errors 

- be careful: 

- ∆ χ² (parameter) is in general not a smooth function 
with a single minimum 
- plot ∆ χ² as function of the parameter 

- the interesting parameter is often not independent 
from other parameters 
- plot two-dimensional ∆ χ² contours 
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Hypothesis Test 
• Literature: J. Kaastra in X-ray spectroscopy in 

astrophysics, 1999, p 276 

• correct model: 
– χ² = n – m (n: number of data points, m:=number of free 

parameters 
– r.m.s.(χ² ) = √(2(n-m)) 

• false model: 
– χ² = n – m + r 
– r~number of photons     (but independent from n) 

• rejection of model 
– χ² ≥ n – m + f √(2(n-m))   r > √(2(n-m)) 
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Hypothesis Test 
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Real Example 
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F-Test 
• literature: J. Kaastra in X-ray spectroscopy in astrophysics, 

1999, p 276 

• F is defined as:  
– F = χ²1 d.o.f 2  /  χ²2 d.o.f.1  
– F = χ²1(n-m2)  /  χ²2(n-m1)  
– where  

• n number of data points 
• m number of fitted parameters 

• F is a statistical quantity! 
– For large n: 
– r.m.s (F) = 2 / √(n) 
– F = 1 + (r1+r2)/n 
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F-Test 
• Example: 

– r1 + r2 = 15   (independent from n) 
– m1=3,  
– m2=6,  

• n = 40,  
– d.o.f.1=37,  χ²1 = 52, d.o.f.2=34  χ²2=34  
– R.m.s.(F) = 0.3162 
– Probability of improvement:  

• F => 99.951897%  
• F+R.m.s(F) =>  99.997780% 
• F-R.M.S(F) =>  98.051537% 

• n = 100,  
– d.o.f.1=97,  χ²1 = 112, d.o.f.2=94  χ²2=94  
– R.m.s.(F) = 0.2 
– Probability of improvement:  

• F => 99.912766% 
• F+R.m.s(F) =>  99.999939% 
• F-R.M.S(F) =>  NO, model 1 is better than model 2 

 



XMM-Newton 
30 

Norbert Schartel  

The Large View 
 

Vaughan, S.; Uttley, P., 2008, MNRAS 390, 421 



XMM-Newton 
31 

Norbert Schartel  

Golden Recipe Of The Statistical Analysis 

1. golden Recipe of the statistical analysis does not exist. 

2. every scientific question is a new statistical challenge and 
often requires a new concepts  

3. In general: 
1. never over-sample a spectra 
2. a bin-width < 1/3 FWHM does not add any spectral 

information, but increases the d.o.f. 
3. if possible bin with constant signal/noise 

4. every spectral analysis requires a new optimal solution 
depending on the analyzed spectra and on the specific 
scientific question 
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