Exploring the Surface of Isolated Neutron Stars with XMM-Newton

Frank Haberl

Max-Planck-Institut für extraterrestrische Physik (MPE) Garching, Germany

Thermally emitting isolated neutron stars

- Surface temperature distributions
- Magnetic fields

XMM-Newton 10th Anniversary ESAC, Villafranca del Castillo, Madrid, Spain 10th December 2009

Some history

- 1932 James Chadwick Discovery of neutron (Nobel Prize in Physics 1935)
- 1931 Lew Landau Proposal for the existence of neutron stars
- 1933 Walter Baade and Fritz Zwicky Neutron stars as end products of stellar evolution created in supernova explosion $p + e^- + 0.78 \text{ MeV} \rightarrow n + v_e$
- 1939 Robert Oppenheimer and George Volkoff
 Theoretical model for a neutron star
 10 km radius, nuclear density 10⁹ tons per cm⁻³
- 1967 Jocelyn Bell and Antony Hewish Discovery of radio pulsars rotation-powered

1971 Riccardo Giacconi et al.Discovery of X-ray binary pulsar Cen X-3powered by accretion of matter from companion star

Can we see isolated neutron stars directly ?

expected size: 10 km radius neutron star @ 100 pc \leftrightarrow dust particle (1µm) on Moon

expected surface temperature: Million degrees (100 eV) $L = A \sigma T^4$

maximum radiation in soft X-ray band inhomogeneous temperatur distribution \rightarrow pulsations

Optical

Thermally emitting neutron stars

Cooling by neutrino emission from interior and photon emission from surface
Temperatures inferred from X-ray spectra (atmosphere models, blackbody fits)
Ages from pulsar spin-down timescales or kinematic ages from proper motions

Thermally emitting neutron stars

Cooling by neutrino emission from interior and photon emission from surface
Temperatures inferred from X-ray spectra (atmosphere models, blackbody fits)
Ages from pulsar spin-down timescales or kinematic ages from proper motions

Middle-aged pulsars: The Three Musketeers

- First X-ray detections with Einstein Observatory
- Timing and spectral analysis with ROSAT
- ROSAT + ASCA: Three-component model Cool BB (bulk of the star surface) Hot BB (smaller hot spots) Powerlaw (magnetosphere)
- **P**/(2P) P dP/dt B (10^{12} G) **(SS⁻¹)** (years) (ms) 5.50x10⁻¹⁴ **B0656+14** 385 111000 4.66 5.83x10-15 197 535000 1.09 **B1055-52** 1.10×10^{-14} Geminga 237 342000 1.63
- XMM-Newton: Pulse phase spectroscopy

De Luca et al. 2005 (ApJ 623, 1051)

Middle-aged pulsars: The Three Musketeers.

PSR B0656+14

PSR B1055-52

Cool blackbody Hot blackbody Powerlaw

Challenge for the simple model based on centered dipole geometry

Radio-quiet isolated neutron stars: The Magnificent Seven

- Blackbody-like soft X-ray spectra
- No non-thermal hard X-ray emission
- No radio emission
- Proper Motion is inconsistent with heating by accretion from ISM
- Low ISM absorption ↔ nearby
- Probably all are X-ray pulsars (~10s)

Soft X-ray spectrum + faint in optical

Best cases for "genuine" cooling INSs with undisturbed emission from stellar surface											
Object	T/10 ⁶ K	kT/eV	P/s	Optical	PM/mas/y	distance/pc					
RX J0420.0-5022	0.51	44	3.45	B > 27.5							
RX J0720.4–3125	0.99-1.10	85-95	8.39	B = 26.6	97	330 +170/-80					
RX J0806.4-4123	1.11	96	11.37	B > 24							
RX J1308.8+2127	1.00	86	10.31	$m_{50ccd} = 28.6$	-)						
RX J1605.3+3249	1.11	96	6.88?	B = 27.2	145						
RX J1856.5–3754	0.73	62	7.06	B = 25.2	332	161 +18/-14					
RX J2143.0+0654	1.17	102	9.44	B = 27.4							

The X-ray spectrum of RX J1856.5-3754

Spectral variations with pulse phase: RBS 1223

Schwope et al. (2005)

Two spots with different parameters and not antipodal!

Long-term spectral changes from RX J0720.4-3125

Increase at short wavelength: temperature increase Decrease at long wavelength: deeper absorption line

Increase in pulsed fraction Phase shift in hardness ratios varying phase lag between soft and hard emission

Precession of the neutron star?

de Vries et al. (2004)

RX J0720.4-3125 spectral variations

with pulse phase and on time scales of years

RX J0720.4-3125: A precessing neutron star?

XMM-Newton observations of the M7: absorption features

RBS 1223 EW = 150 eV Variations of line parameters with pulse phase

RX J0720.4-3125 EW = 40 eV Variable with pulse phase and over years

Van Kerkwijk et al. (2004) EPIC-pn: evidence for multiple lines Proton cyclotron absorption line ? Atomic line transitions ?

In any case B ≈ 10¹³ – 10¹⁴ G

van Kerkwijk & Kaplan 2007 Ap&SS 308, 191

Summary - Magnetic fields

• Magnetic dipole braking $\rightarrow B = 3.2 \cdot 10^{19} (P \cdot dP/dt)^{1/2}$

• Proton cyclotron absorption \rightarrow B = 1.6·10¹¹ E(eV)/(1–2GM/c²R)^{1/2}

Object	Р	Semi	dP/dt	E _{eve}	B _{db}	B _{eve}	
	[s]	Ampl.	$[10^{-13} \text{ ss}^{-1}]$	[eV]	$[10^{13} G]$	$[10^{13} G]$	
RX J0420.0–5022	3.45	13%	< 92	?	< 18		
RX J0720.4–3125	8.39	8–15%	0.698(2)	280	2.4	5.6	
RX J0806.4-4123	11.37	6%	0.55(30)	$430/306^{a}$	2.5	8.6/6.1	
RX J1308.8+2127	10.31	18%	1.120(3)	300/230 ^{a)}	3.4	6.0/4.6	
RX J1605.3+3249	6.88?			450/400 ^{b)}		9/8	
RX J1856.5–3754	7.06	1.5%	0.30(7)	_	1.4	_	
RX J2143.0+0654	9.43	4%	0.41(18)	750	2.0	15	

a) Spectral fit with single line / two lines

b) With single line / three lines at 400 eV, 600 eV and 800 eV

Cooling of strongly magnetized neutron stars.

Strong effects of magnetic field on

- heat transport \rightarrow surface temperature distribution
- the thermal evolution

Summary and outlook

Isolated cooling neutron stars The Three Musketeers $\tau \approx 10^{5-6}$ years, B \approx (1-5) x 10⁶ G (dipole braking) The Magnificent Seven a few 10⁶ years from dP/dt, younger from kinematic ages 10^{13} G (dP/dt + absorption features, factor of 2-3 difference) Influence of the magnetic field on surface temperature distribution thermal evolution

The idealized picture of a neutron star with uniform surface temperature and dipolar magnetic field is too simple.

Stability of XMM-Newton instruments Further monitoring of RX J0720.4–3125: Periodic behaviour? Period evolution of M7 stars: Relation $B_{db} \leftrightarrow B_{cvc}$