# **Galaxy Clusters**

M.Arnaud (CEA-Sap Saclay France)

#### The Cosmic Web, hot baryons and clusters



COSMOS Field:1.6 deg<sup>2</sup> 1000 h (HST) 400 h (XMM) ESO-VLT, CFHT, Subaru ...

3D maps of • total amount of matter 5/6 dark matter (lensing)

- cold baryonic matter (opt+IR)
- hot matter XMM-Newton



R. Massey et al., 2007, Nature

- ⇒ Loose network of filaments, growing over time
- ⇒ Normal matter accumulates along the densest concentrations of dark matter.
- ⇒ Consistent with predictions of gravitationally induced structure formation
- ⇒ hot diffuse baryons: groups at crossing of filaments; no evolution up to z=1.3 (Finoguenov et al, 07)

#### Clusters and filaments



Werner et al, 2008

Detection of hot gas in the filament connecting the clusters of galaxies
Abell 222 and Abell 223

#### Clusters in the early (1/3 age) Universe



Stanford et al, 06



Mullis et al, 04; Rosati et al, 09

The most distant confirmed cluster

The most massive @ z>1

More with XCS on cosmology with N(M,z) ...

### A variety of (evolving) clusters



Dynamically young objects



Relaxed clusters

Precise XMM-Newton spatially resolved spectroscopy  $\Rightarrow$  n(r), T(r)

⇒ new insight on physics of cluster formation

## Physics of mergers



Bohringer& Werner, 09



Schuecker et al, 04

Turbulence induced by merger events

Synergy with radio (LOFAR) and HE (Fermi, CTA..) NT emission

#### Weighting clusters





$$M(r) = -\frac{kT}{G\mu m_p} \left[ \frac{d \mathrm{ln} n_e}{d \mathrm{ln} r} + \frac{d \mathrm{ln} T}{d \mathrm{ln} r} \right]$$



Precise converging calibration of the *local* mass-proxy relation with likely standard evolution up to high z

#### Dark matter distribution



 $\Lambda$ CDM simulations of structure formation: Universal  $\rho/\rho_c(z)$  cuspy profiles



Pointecouteau et al, 05 See also Vikhlinin et al, 06; Buote et al, 07

Universal profile shape as expected from simulations DM collapse well understood

### **New vision of Cooling Cores**



Cooling not as expected



AGN regulates cooling

Specific gas physics cooling non-gravitational heating in center & at large scale not well understood

#### Statistical properties



from REXCESS representative cluster sample



## Entropy and thermo-dynamical history



Entropy excess due to non-grav processes Increase with decreasing mass Less pronounced towards outskirt Increased dispersion in the core due to non-grav processes and dynamical history

#### Pressure profiles



Much lower dispersion
Pressure less (little) affected by
non-grav processes
and
dynamical history

⇒universal pressure profile

Pressure scaled by  $P_{500} \equiv M^{2/3}$ 

#### Pressure and Sunayev-Zel'dovich effect





Y closely related to the mass  $Y_{SZ}$ -M prediction from REXCESS universal profile

# Y<sub>SZ</sub>- M from WMAP





Melin et al to be subm.



Direct SZ data from WMAP in good agreement with XMM predictions

#### Planck SZ All-sky survey



Gain of SZ surveying
Close to mass selected survey
Efficient at high z



Courtesy of A. Chamballu & J.Bartlett; See also Bartlett et al, AN, 08



#### Planck & XMM-Newton





Maughan et al., 2007

1e+15
Total Mass
Gas Mass
1e+12
70 ks XMM
CIJ1226.9+3332 z=0.89

1e+11
R (Mpc)

All hot, luminous systems

- ⇒ ~50-fold increase in sample size of massive clusters
- ⇒ with XMM follow-up:
  - $\Rightarrow$  evolution of c(M) at high M
  - $\Rightarrow$  cosmo from  $f_{gas}(z)$ , N(Y[M],z)

#### CONCLUSION

- new instrument (RGS) ⇒ new (unexpected) vision of cluster
- high throuput spatially resolved spectroscopy (EPIC)
   ⇒much clearer view of complex cluster formation physics
- importance of large samples, deep observations
   e.g deep RGS on center; low mass and/or high z clusters
- new discovery space open in distant universe from SZ surveys