Future Developments in X-ray Astronomy

XMM-Newton 10th Anniversary Meeting
2009 December 10

Mike Watson, Leicester University
The next 15 years

- What can we look forward to?
- How will future missions complement and expand current capabilities?

- Will we still need XMM in 2015? Yes!
- Is there a case for IXO? Yes!

Credits: material liberally adapted from HEASARC, Astro-H, eRosita, Nustar and IXO websites and from presentations by Peter Predehl & Nick White
Current and future X-ray missions

Other missions: Agile, Fermi, MAXI, SVOM, GEMS, NHXM...
e-Rosita

- **e-Rosita:**
 - 7 telescopes, 350 cm² each, CCD cameras
 - large field of view (61 arcmin Ø)
 - survey grasp ~4-5 × XMM-Newton (MOS+PN)
 - PSF 15” HEW on-axis, ~30” FOV-averaged
 - 4y sky survey

Spectrum R-G mission
Russian / German collaboration
launch 2012, L2 orbit
e-Rosita: ~0.2-10 keV + ART

e-Rosita survey sky exposure (4y)

e-Rosita survey grasp A Ω
X-ray sky surveys

- Last all-sky X-ray survey (RASS) was 18 years ago ... and last all-sky hard X-ray survey (HEAO-1) was 30 years ago
- XMM-Newton surveys:
 - serendipitous survey catalogues: ~500 sq.deg
 - contiguous surveys: LSS etc. ≤10 sq.deg.
- e-Rosita sky survey
 - factor >10 fainter than previous sky surveys
 - enormous object catalogues
 - good imaging and spectral resolution (CCDs)
- Science: large scale structure and cosmology with cluster sample + AGN population studies

- e-Rosita sky survey predictions
 - 100,000 clusters
 - ~100 clusters @ z>1.5
 - 3 million AGN
 [450,120, 36, 10]
 @ z >[6, 7, 8, 9]
XMM-Newton 10th Anniversary, ESAC, December 2009

X-ray sky surveys

- Last *all-sky* X-ray survey (RASS) was 18 years ago ... and last all-sky hard X-ray survey (HEAO-1) was 30 years ago
- XMM-Newton surveys:
 - serendipitous survey catalogues: ~500 sq.deg
 - contiguous surveys: LSS etc. ≤10 sq.deg.

- **e-Rosita** sky survey
 - factor >10 fainter than previous sky surveys
 - enormous object catalogues
 - good imaging and spectral resolution (CCDs)
- Science: large scale structure and cosmology with cluster sample + AGN population studies

e-Rosita sky survey predictions
- 100,000 clusters
- ~100 clusters @ z>1.5
- 3 million AGN
 - [450,120, 36, 10]
 - @ z >[6, 7, 8, 9]
Astro-H

- 2 soft X-ray telescopes (SXT), 2 hard X-ray telescopes (HXT)
- SXI: CCD detectors ~ 35’x35’ FOV;
 SXS: calorimeter ~3’x3’ FOV (6 x 6 pix);
 HXI: silicon strip and CdTe detectors ~9’x9’ FOV
- Telescope PSF: 60-90”

- Japanese mission with NASA participation
 launch 2013, LEO
 6/12m focal length grazing incidence telescopes (SXT/HXT)
 SXT/SXI & SXS: ~0.3-12 keV
 HXT/HXI: 5-80 keV + SGD

- Coverage of whole band from ~0.3 to 80 keV
- Imaging spectrometer SXS: 7eV resolution ⇒ Δv ~ 300 km s⁻¹
High resolution X-ray spectroscopy

- Current high spectral resolution (E/ΔE>100) capability restricted to grating spectrometers:
 - *soft band*: XMM RGS, Chandra LETG/HETG
 - *hard band*: Chandra HETG
- Low effective areas ⇒ restricted to bright sources

- **Astro-H SXS** will provide large improvement in high resolution spectroscopy above 2 keV
 - *imaging* cryogenic detector (calorimeter) with ΔE~7 eV
- Science drivers
 - plasma dynamics
 - bulk motion, turbulence in clusters (& SNR, galaxies)
 - inflow/outflow, ionisation structure in AGN
 - detailed plasma diagnostics
 - abundances
High resolution X-ray spectroscopy

- Current high spectral resolution ($E/\Delta E > 100$) capability restricted to grating spectrometers:
 - *soft band*: XMM RGS, Chandra LETG/HETG
 - *hard band*: Chandra HETG
- Low effective areas \Rightarrow restricted to bright sources
- **Astro-H SXS** will provide large improvement in high resolution spectroscopy above 2 keV
 - *imaging* cryogenic detector (calorimeter) with $\Delta E \sim 7$ eV
- Science drivers
 - plasma dynamics
 - bulk motion, turbulence in clusters (& SNR, galaxies)
 - inflow/outflow, ionisation structure in AGN
 - detailed plasma diagnostics
 - abundances
Nustar

- Grazing incidence hard X-ray telescope (with multilayers)
 - PSF \sim45″ HEW
 - FOV \sim12x12′
- CZT detector; $\Delta E \approx 1$ keV @ 60 keV
- First high energy X-ray imaging (above 10 keV)

NASA mission led by Caltech
launch 2011, LEO
10m grazing incidence telescopes (multi-layers)
6-80 keV

Mike Watson, Leicester University
X-ray imaging above 10 keV

- Observations above ~10 keV currently limited to non-imaging instruments (e.g. Suzaku HXD, Swift BAT, Integral IBIS)
 ⇒ Limited to bright sources

- Nustar and Astro-H HXT/HXI will bring first imaging to the hard X-ray band
 - sensitivity increase by factor ~100

- Science drivers
 - obscured AGN
 - particle accelerators/non-thermal spectra: GC, SNR, PWN, AGN-jets...

Mike Watson, Leicester University
X-ray imaging above 10 keV

- Observations above \sim10 keV currently limited to non-imaging instruments (eg. Suzaku HXD, Swift BAT, Integral IBIS)
 - Limited to bright sources

- Nustar and Astro-H HXT/HXI will bring first imaging to the hard X-ray band
 - sensitivity increase by factor \sim100

- Science drivers
 - obscured AGN
 - particle accelerators/non-thermal spectra: GC, SNR, PWN, AGN-jets ...

Simulation of 2x2 deg. field

Arp 220 simulation, courtesy Valentina Braito

INTEGRAL

NuSTAR

~200 sources
25-50% of XRB

Current capability
$F_x (15-100\text{keV}) \sim 10^{-11} \text{cgs}$

possible highly obscured AGN compt

future capability

Mike Watson, Leicester University
IXO
International X-ray Observatory

- X-ray mirrors (aka FMA)
 - highly nested grazing incidence optics
 - 3 sq m @ 1.25 keV with a 5” PSF

- Instruments
 - X-ray Micro-calorimeter Spectrometer (XMS)
 - X-ray Grating Spectrometer (XGS)
 - Wide Field Imager (WFI) and Hard X-ray Imager (HXI)
 - X-ray Polarimeter (XPOL)
 - High Time Resolution Spectrometer (HTRS)

Joint ESA/JAXA/NASA Mission
merger of Con-X & XEUS July 2008
under review in US Decadal and ESA Cosmic Visions
launch 2021, L2 orbit
20m focal length
XMS, WFI, HTRS, XPOL, XGS, HXI

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Bandpass (keV)</th>
<th>PSF (arcsec)</th>
<th>FOV (arcmin)</th>
<th>Energy Resolution (eV@keV)</th>
<th>Science Driver</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMS</td>
<td>0.3–12</td>
<td>5</td>
<td>2 x 2</td>
<td>2.5@6</td>
<td>Galaxy Clusters</td>
</tr>
<tr>
<td></td>
<td>Outer</td>
<td>5</td>
<td>5 x 5</td>
<td>10@6</td>
<td></td>
</tr>
<tr>
<td>WFI/HXI</td>
<td>0.1–15</td>
<td>5</td>
<td>18 diameter</td>
<td>150@6</td>
<td>SMBH survey</td>
</tr>
<tr>
<td>XGS</td>
<td>0.3–1.0</td>
<td>5</td>
<td>N/A</td>
<td>E/DE ~ 3000</td>
<td>Cosmic Web</td>
</tr>
<tr>
<td>HTRS</td>
<td>0.3–10</td>
<td>N/A</td>
<td>N/A</td>
<td>150@6</td>
<td>NS ExS</td>
</tr>
<tr>
<td>XPOL</td>
<td>2.0–10.0</td>
<td>6</td>
<td>2.5 x 2.5</td>
<td>1200@6</td>
<td>SMBH Spin</td>
</tr>
</tbody>
</table>

Mike Watson, Leicester University
IXO performance

- Imaging/CCD spectroscopy: effective area a factor of >10x of current missions
- Imaging high resolution spectroscopy: capabilities >100x of current missions

The improvement of IXO relative to current X-ray missions is equivalent to a transition from a 4m telescope to a 20m telescope, while at the same time shifting from multi-band imaging to an integral-field spectrograph.
IXO XMS calorimeter: 5’ x 5’ FOV
pixel size matches PSF
IXO science

- Interconnected science goals:
 - extreme environment and evolution of black holes
 - energetics and dynamics of the hot gas in large cosmic structures
 - constrain the equation of state of neutron stars
 - track the dynamical and compositional evolution of interstellar and intergalactic matter

IXO studies of virtually every class of astronomical object will return rich new discoveries
The case for IXO

IXO addresses wide range fundamental astrophysics questions ...

- X-ray studies provide the best way to explore the hot and extreme Universe - complementary to UV/opt/IR/radio.

- IXO capabilities represent a significant step forward - by factors of 10 to 100
 - not available for missions to be launched in next 5 years
 - IXO required to extend X-ray studies beyond the local Universe
 - and to match planned capabilities at other wavelengths

- Worthy successor to XMM-Newton and Chandra

Nandra et al., 2009. Decadal White Paper
Summary

Next 5 years
- e-Rosita 2012
 - new hard X-ray sky survey, *target discovery for other missions*
- Nustar 2011
 - true hard X-ray imaging above 10 keV
- Astro-H 2013
 - high resolution spectroscopy (& imaging) up to 10 keV
 ... plus broad band-pass and true hard X-ray imaging

Beyond
- IXO 2021
 - enormous area for imaging/spectroscopy/polarimetry/timing ...
 extending to 80 keV
 - more revolution than evolution!
XMM’s capabilities unique?

<table>
<thead>
<tr>
<th></th>
<th>2009</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPIC: highest throughput for X-ray imaging & CCD spectroscopy + best PSF (apart from Chandra!)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Astrosat, eRosita and Astro-H have lower areas and worse PSF</td>
</tr>
<tr>
<td>RGS: low energy grating spectroscopy (including small-scale extended objects)</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>no new grating instruments, calorimeter resn. not competitive below ~2 keV</td>
</tr>
</tbody>
</table>

Mike Watson, Leicester University