The European Photon Imaging Camera on XMM-Newton: The pn-CCD Camera

L. Strüder1, U. Briel1, K. Dennerl1, R. Hartmann2, E. Kendziorra4, N. Meidinger1, E. Pfeffermann1, C. Reppin1, B. Aschenbach1, W. Bornemann1, H. Bräuning1, W. Burkert1, M. Elender1, M. Freyberg1, F. Haberl1, G. Hartner1, F. Heuschmann1, H. Hippmann1, E. Kastelic1, S. Kemmer1, G. Kretzschmar1, W. Kink1, N. Krause1, S. Müller1, A. Oppitz1, W. Pietsch1, M. Popp3, P. Predehl1, A. Read1, K. H. Stephan1, D. Stötter1, J. Trümper1, P. H. Hoff2, J. Kemmer2, H. Soltau2, R. Stötter2, U. Weber2, C. von Zanthier2, G. Lutz2, R. H. Richter3, P. Solc3, H. Böttcher4, M. Kuster4, R. Staubert4, A. Abbey5, A. Holland5, M. Turner6, M. Balasini6, G. F. Bignami6, N. La Palombara6, G. Villa6, W. Buttlar7, R. Lainé8, D. Lumby8, and P. Dhez9

1 Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße, 85748 Garching, Germany, email: its@hll.mpg.de
2 KETEK GmbH, Am Isarbach 30, 85764 Oberschleißheim, Germany
3 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
4 Institut für Astronomie und Astrophysik, Walther-Hübner Str. 64, 72076 Tübingen, Germany
5 X-ray Astronomy Group, Dept. of Physics and Astronomy, Leicester University, Leicester, U.K., LE1 7RH, UK
6 Istituto di Fisica Cosmica “G. Occhialini”, CNR, Via E. Bassini 15/A - 20133 Milano, Italy
7 Ingenieurbüro Buttlar, Eschenburg 55, 45276 Essen, Germany
8 ESTEC, PX, Postbus 299, 2200 AG Noordwijk, The Netherlands
9 LURE, Bat. 209 D, Université Paris Sud, 91405 Orsay, France

Received 30. 9. 2000; accepted ...

Abstract. The European Photon Imaging Camera (EPIC) consortium has provided the focal plane instruments for the three X-ray mirror systems on XMM-Newton. Two cameras with a reflecting grating spectrometer in the optical path are equipped with MOS type CCDs as focal plane detectors, the telescope with the full photon flux operates the novel pn-CCD as an imaging X-ray spectrometer. The pn-CCD camera system was developed under the leadership of the Max-Planck-Institut für extraterrestrische Physik (MPE), Garching.

The concept of the pn-CCD is described as well as the different operational modes of the camera system. The electrical, mechanical and thermal design of the focal plane and camera is briefly treated. The in-orbit performance is described in terms of energy resolution, quantum efficiency, time resolution, long term stability and charged particle background. Special emphasis is given to the radiation hardening of the devices and the measured and expected degradation due to radiation damage of ionizing particles in the first 9 months of in orbit operation.

Key words: XMM-Newton, back illuminated pn-CCDs, radiation hardness, energy resolution, quantum efficiency, particle and fluorescence background

1. Introduction

For ESA’s X-ray Multi Mirror (XMM) mission, we have developed a 6x6 cm² monolithic X-ray CCD array (Strüder et al. 1990) with high detection efficiency up to 15 keV, low noise level (ENC ≈ 5 e⁻) and ultrafast readout. The detector was tailored to the requirements of the XMM telescope performance, concerning angular resolution, collecting area, energy bandwidth and field of view (FoV).

Conceptually the pn-CCD, the heart of the MPE focal plane detector, is a derivative of the silicon drift detector proposed in 1983 by E. Gatti and P. Rehak (1984). In the following years the basic concept was modified, simulated and designed in detail by Strüder et al. (1987). N-channel JFET electronics was integrated in 1992 (Pinotti et al., 1993) and the first reasonably working devices were produced in 1993.

The flight type large area detectors were fabricated in 1997 in the MPI semiconductor laboratory, with a sufficiently high yield to equip ABRIXAS and XMM with defect free focal plane pn-CCDs (Strüder et al., Soltau et al., 1997, 2000 resp.).
The in-orbit commissioning of XMM’s scientific payload was completed in the middle of March 2000 – three months after launch; calibration and performance verification terminated in July. Since then, the official observing programme is under way. This contribution summarizes the basic instrument features as previously planned and implemented in orbit to date, as well as their scientifically relevant measured performance in space. We have included orbit data up to September 2000.

2. The concept of fully depleted pn-CCDs

The principle of sideward depletion in high resistivity silicon is the basis of a large variety of novel silicon detectors, such as silicon drift detectors, controlled drift detectors, active pixel sensors — and pn-CCDs.

2.1. The camera concept

The angular resolution of the XMM X-ray telescope in front of the pn-CCD camera (mirror flight model 2, FM2) is 15 arcsec half energy width (HEW) at 1.5 keV and 8 keV. This translates to 540 µm position resolution in the focal plane. For a given telescope performance the concept of sideward depletion allows for an optimum adaption of the pixel size to the X-ray optics, varying from 30 µm up to 300 µm. The FWHM of the point spread function (PSF) is 6.6 arcsec. A pixel size of 150 µm × 150 µm (4.1 arcsec) was chosen, with a position resolution of 120 µm, resulting in an equivalent angular resolving capability of 3.3 arcsec. The energy response is higher than 90 % at 10 keV because of the sensitive thickness of 300 µm. The low-energy response is given by the very shallow implant of the p+ back contact; the effective “dead” layer is of the order of 300 Å (Hartmann et al. 1997). High time resolution is a consequence of the parallel readout of 64 channels per subunit; in total 768 channels for the entire camera. High radiation hardness is built in by avoiding active MOS structures and by the fast transfer of the charge in a depth of more than 10 µm below the surface. For low energy protons, imaged through the X-ray optics (Aschenbach, 2001) the pn-CCD is “self shielding”, because the ionizing radiation has to propagate through 290 µm of silicon before damaging the transfer channel and increasing charge transfer efficiency (CTE) losses. As there is only a negligible transmission of protons through the X-ray optics above 500 keV, there is no problem for the pn-CCD with low energy protons at all. Measurements in a proton accelerator by Meidinger et al. (2000) with up to 2 × 10^9 10 MeV protons, equivalent to 4 times the expected 10 year XMM irradiation in space, only showed a degradation of about 20 eV in the FWHM of the MnKα line. Kendziorska et al. (2000) tested the pn-CCDs with a low energy proton flux up to 1.4 × 10^9 protons per cm². No change of the detector’s properties was seen. This proton irradiation at energies between 1 keV and 300 keV with prominent peaks at 70 keV and 170 keV, was a factor of 1000 above the expected low energy proton flux in orbit. Up to now, no measurable degradation due to radiation damage was found.

2.2. The basic principles of pn-CCDs

The schematic view into the pn-CCD in Fig. 1 already introduces intuitively the advantages of the concept: X-rays hit the detector from the rear side. In case of an X-ray interaction with the silicon atoms, electrons and holes are generated. The average energy required to form an electron-hole pair is 3.7 eV at -90° C. The strong electric fields in the pn-CCD detector separate the electrons and holes before they recombine. Signal charges (in our case electrons), are drifted to the potential minimum and stored under the transfer registers. The positively charged holes move to the negatively biased back side, where they are ‘absorbed’. The electrons, captured in the potential wells 10 µm below the surface can be transferred towards the readout nodes upon command, conserving the local charge distribution patterns from the ionization process. As can be seen in Fig. 1, each CCD line is terminated by a readout amplifier. The focal plane layout is depicted in Fig. 2. Four individual quadrants each having 3 pn-CCD subunits with a format of 200×64 pixel are operated in parallel.

The spatially uniform detector quality over the entire field of view is realized by the monolithic fabrication of 12 individually operated 3×1 cm² pn-CCDs on a single wafer (see Fig. 2). No inhomogenities were observed in the tested energy range from 700 eV up to 8 keV, the measured flatness of the homogeneity measurements was always limited by Poisson statistics. Fig. 2 shows the insensitive or partially sensitive gaps in between the different CCDs and...
Table 1. Parameters of the six standard readout modes as implemented in-orbit

<table>
<thead>
<tr>
<th>mode</th>
<th>field of view (FoV) in pixel format</th>
<th>time resolution (in ms)</th>
<th>out of time (OOT) events in %</th>
<th>life time with OOT events in %</th>
<th>brightest point source for XMM in counts per sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>full frame</td>
<td>398 x 384</td>
<td>73.3</td>
<td>6.2</td>
<td>99.9</td>
<td>6</td>
</tr>
<tr>
<td>(1)</td>
<td>27.2 x 26.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>extended full frame</td>
<td>398 x 384</td>
<td>199.2</td>
<td>2.3</td>
<td>100</td>
<td>for extended sources only</td>
</tr>
<tr>
<td>(2)</td>
<td>27.2 x 26.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>large window</td>
<td>198 x 198</td>
<td>47.7</td>
<td>0.15</td>
<td>94.9</td>
<td>9</td>
</tr>
<tr>
<td>(3)</td>
<td>13.5 x 26.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>small window</td>
<td>63 x 64</td>
<td>5.7</td>
<td>1.1</td>
<td>71.0</td>
<td>104</td>
</tr>
<tr>
<td>(4)</td>
<td>4.3 x 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>timing</td>
<td>199 x 64</td>
<td>0.03</td>
<td>100</td>
<td>99.5</td>
<td>4000</td>
</tr>
<tr>
<td>(5)</td>
<td>13.6 x 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>burst</td>
<td>20 x 64</td>
<td>0.007</td>
<td>depends on</td>
<td>3.0</td>
<td>60000</td>
</tr>
<tr>
<td>(6)</td>
<td>1.4 x 4.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Overview of the internal boundaries of the pn-CCD focal plane. The division of the focal plane in subunits was made because of redundancy reasons. The focal point of the X-ray telescope is in CCD0, quadrant 1. About 97% of the telescopes field of view is covered by the focal plane. About 6 cm² of the CCD’s sensitive area are outside the field of view and is used for background studies.

Fig. 3. Operating modes of the pn-CCD camera (a) Full frame and extended full frame mode, (b) Large window mode, (c) small window mode and (d) timing mode and burst mode.

leakage current. We have chosen a temperature of -90°C, reducing the leakage current to less than 0.1 e⁻ per pixel and per readout cycle of 73 ms. Taking into account the residual partial pressure inside the camera of less than 10⁻⁵ mbar, formation of monolayers of e.g. ice on the radiation entrance window should not occur.

2.3. Operating modes

CCDs have originally been designed for photon intensity imaging, not single photon counting in a spectroscopic mode. To make CCDs useful for X-ray imaging and spectroscopic applications simultaneously, they must be oper-
ated such that only one X-ray photon hits the detector without an overlap in time and position of another photon. The design of the readout modes was driven by the assumption that the local photon flux should be below \(\frac{\text{N}}{\text{X-ray}} \) events per pixel and integration time. To adapt the X-ray camera readout mode to the point source brightness, the integration time of the CCD camera can be shortened — by reducing the area to be read out. Under the cost of sensitive area the photon flux can be increased. Fig. 3 shows which part of the CCD array is read out in the different modes. Table 1 contains the most important parameters of the pn-CCD readout modes. A detailed summary was given by Kuster et al. (1999).

2.3.1. The full frame and the extended full frame modes

In the pn-CCD's full frame mode, a complete readout cycle takes 73.3 ms for one individual CCD subunit. Within that time, 4.6 ms (200 × 23 µs) are needed for the readout itself, and 68.7 ms are used for the integration of the image. This timing schedule leads to 6.2 % "out-of-time events", events, which hit the detector during the readout. In the extended full frame mode the X-ray integration time is 199.2 ms with again 4.6 ms readout, leading to 2.3 % of out-of-time events only. The extended full frame mode is suggested for the observation of extended objects. The time resolution in both cases is the total cycle time, i.e. photon integration time plus readout time.

2.3.2. The large and small window modes

Both window modes are operated similar to a conventional frame store mode, where in our case the storage area is not covered by an X-ray blocking shielding. No bright source should be focussed on the storage area, because it could contaminate the information integrated in the image area.

The window modes as shown in Fig. 3 reduce the field of view to reduce the number of out-of-time events and to improve the time resolution and finally improve the pile-up limit for bright sources. In the large window mode the inner half of the CCD is used for imaging, then rapidly transferred towards the readout node (720 ns per CCD line) and eventually read out, similar to the full frame mode. During the fast transfer the image outside the defined FoV is automatically cleared. The time resolution is lowered to 47.7 ms and the out-of-time events drop below 0.2 % in the large window mode. The small window mode operates comparably. The difference is that the field of view is further reduced to 63 × 64 pixels and only one quadrant is operated instead of four. The time resolution drops to 5.7 ms and out-of-time event contribution is 1.1 %. The small window mode only uses CCD0 of quadrant 1, i.e. the focal CCD.

2.3.3. The timing and burst modes

Only the CCD0 from quadrant 1 is operated in the fast modes. The timing mode forms macro-pixels of 10 × 1 pixels. In one dimension (64) the position resolution is maintained while the other 10 pixels are read out only after 9 fast transfers without electronic processing. That means, that 10 pixels along a column are integrated on the readout node. The position information within those 10 pixels is lost, it is conserved in the perpendicular direction. The time resolution is then 30 µs.

The burst mode rapidly transfers 179 pixels and then reads the content of CCD0 in the conventional way. This allows for a 7 µs time resolution and up to 60,000 counts per second in the PSF. After each read out, the entire CCD is cleared from signals. The duty cycle (life time) in this mode is only 3%. The strongest sources can be observed in that mode.

2.4. The mechanical and thermal concept of the pn-CCD camera system

The camera housing is mainly made out of aluminum, the average integrated equivalent aluminum thickness, shielding the CCD from cosmic ionizing radiation is roughly 3 cm. The aluminum (AlZnMgCu, 5) contains Si, Fe, Cu, Mn, Mg, Cr, Zn and Ti. In total, these 'trace' elements represent about 10% of the total mass. Fig. 4 shows a cross section through the pn-CCD camera system. The main components are the radiator, cold finger, proton shield and the printed circuit board with the integrated preamplifiers (CMX and TMX) and the pn-CCD, mounted in an invar ring. The interconnections between the CCD and the surrounding electronics on the PC board are wedge-bonded. About 900 bonds were required, all individually coated, to improve their mechanical stability.

The invar consists mainly of Ni, Mn, Si, C and Fe. The PC board contains beside its Mo core Cu lines as metal-
Table 2. Filter properties (Sn = Tin, PP = Polypropylene, PI = Polyimide, Al = Aluminium)

<table>
<thead>
<tr>
<th>filter</th>
<th>layer 1</th>
<th>layer 2</th>
<th>layer 3</th>
<th>layer 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>µg cm(^{-2})</td>
<td>µg cm(^{-2})</td>
<td>µg cm(^{-2})</td>
<td>µg cm(^{-2})</td>
</tr>
<tr>
<td>thick</td>
<td>Sn</td>
<td>Al</td>
<td>PP</td>
<td>Al</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>28</td>
<td>27.5</td>
<td>28</td>
</tr>
<tr>
<td>medium</td>
<td>Al</td>
<td>PI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>21.6</td>
<td>22.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>thin</td>
<td>Al</td>
<td>PI</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>22.4</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>closed</td>
<td>Al</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>270200</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

lization layer\(^1\). A spider type support structure, smoothly pressed onto the PC board and on CCD wafer act as a mechanical stabilization of the main components of the camera head.

Between stand-off cone and stand-off base a filter wheel is implemented with 6 filter positions: Four positions carry filters of different thicknesses (see Table 2), one position is open and the closed position is realized by a 1 mm thick aluminum plate, to block ionizing radiation imaged through the mirror system. A calibration fluorescent source (AlK\(_\alpha\) and MnK\(_\alpha\) and MnK\(_\beta\), 1.487 keV and 5.898 keV and 6.490 keV resp.) is located at an intermediate position between the filters and the open position for in-orbit calibration (see Fig. 4).

The actual planning foresees an operating temperature of the pn-CCD of -90°C during the whole mission. An active temperature control stabilizes the chip temperature to better than 0.1 K. The temperature is measured on the CCD directly and on the invar ring. The thermal design was made to achieve CCD temperatures as low as -140°C while dissipating 0.9 W of power in the focal plane.

The electronic concept was designed with a high degree of redundancy. The four quadrants of the CCD wafer are operated and controlled separately. In addition the three CCDs of one quadrant can be electrically adjusted almost independently. The relevant supply voltages and currents of each CCD are programmable from ground. This enables the instrument team to modify operating conditions in case of performance degradation, if needed.

3. Instrument performance

The pn-CCD camera system was submitted to an intensive ground calibration programme. A detector response matrix was filled with measured data and modelled interpolations, where no data were available. Within the measurement accuracy the in-flight performance does not

\(^1\) As you will see later, most of the K\(_\alpha\) and K\(_\beta\) lines of the mentioned atoms appear as fluorescence lines in the calibration spectra in Fig. 6.

Fig. 5. Quantum efficiency (QE) of the pn-CCD. The dotted line represents the potential QE improvement with a 500 µm thick detector compared to 300 µm (solid line).

Fig. 6. Calibration spectrum with the internal radioactive source including the background with the filter wheel in closed position. The continuous background below the Mn lines arises mainly from photoelectrons stimulated from the \(^{54}\)Fe source in the Al target. The iron K\(_\alpha\) line between MnK\(_\alpha\) and MnK\(_\beta\) is not resolved.

3.1. Quantum efficiency

The fully depleted 300 µm of silicon determines the detection efficiency on the high energy end, while the quality of the radiation entrance window is responsible for the low energy response. Fig. 5 shows the result of the absolute quantum efficiency calibration at PTB (BESSY synchrotron in Berlin) and LURE (synchrotron in Orsay, Paris). All measurements were made under conditions comparable to space operation. The drop of quantum effi-
ciency (QE) at the lowest energies is caused by the
properties of the silicon L-edge. The absorption length of X-rays
in silicon at e.g. 150 eV is only 30 nm. A thin oxide layer
of the order of 20 nm already absorbs about one half of the
incident photons. The drop of about 5% of QE at 528 eV
is due to the additional absorption in the SiO₂ passivation
on the detector surface. The other prominent feature
in Fig. 5 is the typical XAFS behaviour around the
silicon K edge at 1.838 keV, enlarged in the inset of Fig.
5. At higher energies the solid line nicely fits the photon
absorption data for 300 μm of silicon. The solid line is
a fit to the measured data with a depletion thickness of
298 μm. The dotted line shows the calculated high energy
QE for 500 μm sensitive thickness. The QE is not sup-
posed to change during the XMM lifetime under nominal
conditions.

3.2. Energy resolution

The energy resolution is mainly determined by the statisti-
cal fluctuations of the ionization process (Fano noise), the
charge transfer properties of the CCD and the elec-
tronic noise of the readout node. Fig. 6 shows about 31
hours of recently measured in-orbit data with the internal
calibration source in the “closed-cal” position. The
signals selected are only those which hit the CCD in the
last 20 lines of the 12 CCDs, the area, which also con-
tains the focal point. X-ray events from this region have
undergone the maximum number of charge transfers and
therefore the highest charge losses. The AIKα, the MnKα
and MnKβ and the MnKα escape peak are clearly visible.
The CuKα and CuKβ peaks are fluorescence lines from
the printed circuit board, generated by ionizing particles
traversing the whole pn-CCD camera. The other fluo-
rescence lines (e.g. KKα, TiKα, VKα, CrKα, FeKα, NiKα,
ZnKα) and others are trace elements in the aluminum
structure of the camera and the invar ring holding the pn-
CCD wafer. The energy resolution in the full frame mode
is extracted from the internal calibration source including
all kind of X-ray background. It is very stable over the
first 9 months. At MnKα the FWHM is 161 eV in the fo-
cal point, it is 152 eV averaged over the whole CCD and
is 140 eV close to the readout nodes. The energy resolu-
tion improves in the extended full frame mode to 148 eV
(FWHM) averaged over the entire chip. The AIKα reso-
lution is 111 eV (FWHM) for the full frame and 105 eV
in the extended full frame mode. Due to the heavy over-
lap of many lines and because of the underlying continuous
background the energy resolution is slightly better for
monochromatic radiation.

3.3. Instrument stability

The long term instrument stability is checked routinely in
terms of housekeeping data from all relevant camera pa-
rameters and by analysing the spectroscopic performance
of the on-board calibration source. Fig. 7 shows the vari-
ation of the AIKα peak position as a function of time after
launch. Within less than 1 ADU count (5 eV) all measure-
ment points are compatible with the pre-launch data.

The strong solar flare on July-14 did not leave any mea-
surable damage in the pn-CCD camera. However, during
and immediately after the two Cluster launches, XMM-
Newton was put into the save-mode due to reduced ground
antenna capacity. After switching on the instruments we
have observed a peak-shift at the MnKα line up to 5 ADU
counts (0.4 %), which suddenly disappeared again after a
few revolutions. The origin of that peak shift is not yet
clear. The peak shift cannot be attributed to a degra-
dation in terms of radiation damage, but rather to e.g. ther-
mal instabilities of the electronics. The energy resolution
was not affected by the peak shift.

3.4. Instrument background

As can be seen in Fig. 6 two other features of the spec-
trum need some explication. (a) The continuous back-
ground from the lowest energies up to the MnK lines.
This background is due to photo electrons from the Al
fluorescence target, excited from the MnK X-rays from
the calibration source. Because of the very thin radiation
entrance window of the pn-CCD the low energy electrons
can be clearly detected with high QE. This property is
equally responsible for the high QE response for soft X-
rays. (b) The flat background distribution for the highest
energies arises from Compton electrons, generated by X-
and gamma rays.

Another source of instrument background is originated
by highly ionizing particles, being imaged by means of
grazing incidence reflection through the X-ray telescope.
They can be light and heavy ions as well as highly ioniz-
ing low energy protons (Aschenbach, 2001). The pn-CCD
camera has the option to lower the gain of the signal pro-
cessing electronics by a factor of 20 to increase the dy-
namic range in the so-called low-gain mode above 300 keV.
This mode is very useful to study background phenomena.
Fig. 8 shows an example of such a measurement. During
an observation in low-gain a sudden increase in count rate
by a factor of 2.5 occurred in the CCD cameras with-
out getting notice from the radiation monitor.2 The above
threshold counter indicated an increased number of parti-
cles. The result of the analysis of those ”soft proton flares”
were summarized by Strüder et al., (2000):

1. The energy distribution of the protons has its max-
imum at the lowest measured energies at 1 keV with
an exponential attenuation of 4 orders of magnitude

2 The low energy proton flare was still ongoing after the drop
in count rate after 2.7 × 10⁶ s, but the camera was automatic-
ally switched off and the filter wheel closed because of the
high number of counts.
ergy resolution is the same as in the ground calibrations and the instrument performance is stable with time. The instrument background is in the process of being understood. Low energy protons can limit the sensitivity of observations, but do not damage the focal plane detector.

Acknowledgements. The XMM - Newton project is supported by the Bundesministerium für Bildung und Forschung / Deutsches Zentrum für Luft- und Raumfahrt (BMBF/DLR), the Max-Planck Society and the Heinemann-Stiftung. In addition we would like to thank Käser-Threde GmbH for the design of the pn camera head.

The European Photon Imaging Camera was developed by the EPIC Consortium led by the Principal Investigator, Dr. M. J. L. Turner. The consortium comprises following Institutes: MPE Garching, IAAT Tübingen, (Germany); University of Leicester, University of Birmingham, (UK); CEA/Saclay, IAS Orsay, CESR Toulouse, (France); IFC Milan, ITESRE Bologna, IAP Palermo, Italy. EPIC is funded by: PPARC, CNES, DLR and ASI.

We are indebted to the staff of the MPI semiconductor laboratory, and the technical divisions at the MPE and IAAT.

References

Gatti, E., and P. Rehak: 1984, Semiconductor drift chamber - an application of a novel charge transport scheme, NIM A 225, pp 608 - 621

Aschenbach, B.: 2001, Grazing incidence reflection of protons, to be published in NIM A

Meidinger, N., B. Schmalholz and L. Strüder: 2000, Particle and X-ray damage in pn-CCDs , NIM A 439, pp 319 – 337

