# Unwrapping the X-ray Spectra of Active Galactic Nuclei

#### **Chris Reynolds**

Department of Astronomy & Joint Space Science Institute (JSI) University of Maryland College Park USA



## Outline

The components of an AGN X-ray spectrum
Some highlights in recent studies of...
Physics of X-ray coronae
Black hole spin
Fast winds and "quasar-mode" feedback
Setting scene for talks to follow...





















#### Observed Iron K lags







## II : Inner Disk Reflection & Black Hole Spin



High-resolution MHD simulation of thin-disk / density rendering

(CSR & Fabian 2008 Penna et al. 2010)

#### Bare Seyfert galaxy SWIFTJ2127.4+5654 (z=0.014)



19



#### Compilation of spin constraints









PG1211+143 w/XMM : Absorption line from v~0.1c outflow (Tombesi+2010; Pounds+2003)

> PDS456 w/NUSTAR : P-Cyg profile from v~0.3c outflow (Nardini+ 2015)



6/15/15

**Extremes of BH Accretion** 



6/15/15

**Extremes of BH Accretion** 

#### Cygnus A w/NuSTAR (Reynolds et al., submitted)



Extremes of BH Accretion



ICM + cABS(PL+REFL)  $\int \Delta \chi^2 = 74(5)$ ICM + cABS(PL+PCYG)  $\int \Delta \chi^2 = 19(2)$ ICM + cABS(PL+PCYG +absLINE)

ICM + cABS(PL+emLINE)

ICM + cABS(PL)

6/15/15

Bunclub

27

#### Best fitting NuSTAR model to Cygnus-A



### The wind...

#### Assume

Wind subtends Ω=π of the sky as seen by source
Velocity is escape speed at launching site
Then
Mass flux... M<sub>dot</sub> = 110 (L<sub>bol</sub>/c<sup>2</sup>)
Momentum flux... P<sub>tot</sub> = 10 (L<sub>bol</sub>/c)
Kinetic energy flux... L<sub>K</sub> = 0.42 L<sub>bol</sub>





## The wind in Cygnus A...

#### Assume

- Wind subtends  $\Omega = \pi$  of the sky as seen by source
- Velocity is escape speed at launching site
- Then
  - Mass flux...  $M_{dot} = 110 (L_{bol}/c^2)$
  - Momentum flux...  $P_{tot} = 10 (L_{bol}/c)$
  - Kinetic energy flux... L<sub>K</sub> = 0.42 L<sub>bol</sub>

Appear to have a strong wind (possibly exercising feedback on galaxy) <u>at same time</u> as we see strong jets (feeding back on cluster)

#### Simulated Astro-H Observation of MCG-6-30-15



## Conclusions

Selected highlights from AGN/X-ray spectroscopy

 Evidence for pair-regulated coronae
 Samples of black hole spin; even measure in complex cases
 Prevalence of high-spin sources may be largely efficiency bias
 Fast powerful disk winds and feedback on host galaxy

 May of these advances enabled by high-s/n and wide-bandpass possible with joint XMM+NuSTAR (or Suzaku +NuSTAR)
 Looking forward to Astro-H era