Modelling broad Fe Kα reverberation



Ed Cackett (Wayne State University) ecackett@wayne.edu

For the paper: Cackett et al. 2014, MNRAS, 438, 2980

For a review: Uttley, Cackett, Fabian, Kara & Wilkins 2014, A&ARv, 22, 72



Collaborators: Abdu Zoghbi, Chris Reynolds, Andy Fabian, Erin Kara, Phil Uttley, Dan Wilkins

#### Relativistic reflection in AGN





NGC 1365: Risaliti+13

 Reflection predicts lags between the continuum and reflected components

#### Reflection predicts reverberation lags



- Path-length difference between continuum and reflected photons will lead to a time lag
- Lag will depend on geometry and kinematics of region

- Determine lags between lightcurves in different energy bands using Fourier techniques (see Uttley+14 for detailed description)
- \* So can look at lags vs frequency (timescale) and energy

#### First Fe Ka lag: NGC 4151



## More Fe K lags

- \* Now detected in >9 objects (Zoghbi+12, 13; Kara+ 13a, b, c, 14a, b; Marinucci+14)
- \* Fe K lag scales with black hole mass

![](_page_4_Figure_3.jpeg)

# Time-dependent model for an irradiated disk

- <u>Transfer function</u> (or impulse response function) describes the link between the direct and reflected lightcurves (blurring kernel)
- \* Time-dependent disk transfer functions explored by, e.g. Reynolds+99
- \* Here, we assume simple lamp-post type geometry

![](_page_5_Picture_4.jpeg)

# Time-resolved Fe K emission from a disk

![](_page_6_Figure_1.jpeg)

![](_page_7_Figure_0.jpeg)

![](_page_8_Figure_0.jpeg)

# Frequency and energy dependence of lag

- \* Fe K lag you see depends on the frequency you look at
- High frequencies filter against the largest size-scales

![](_page_9_Figure_3.jpeg)

Cackett+14

#### Dependence on geometry

![](_page_10_Figure_1.jpeg)

## Fitting NGC 4151

- \* We assume optical reverberation mapping mass,  $M = 4.6 \times 10^7 M_{\odot}$
- \* Best-fit: X-ray source at height  $7 \pm 3 R_G$  above the black hole
- \* Low inclination required by zero lag above 6.5 keV

![](_page_11_Figure_4.jpeg)

#### Including full reflection (not just Fe K)

![](_page_12_Figure_1.jpeg)

#### MCG-05-23-16

- Fe K lag (Zoghbi+2013) and Compton hump lag with NuSTAR (Zoghbi+2014)
- \* Preliminary look at reflection model fits well ( $h = 10 R_g$ )

![](_page_13_Figure_3.jpeg)

#### Lags in neutron stars

- Barret (2013) reported possible reverberation in neutron star LMXB 4U 1608-52, looking at lower kHz QPO lags
- \* Are they consistent with reverberation?
- \* Convolve TF with best-fitting reflection model (irradiated by blackbody)

![](_page_14_Figure_4.jpeg)

#### Does the model fit?

- Reverberation only provides poor fit
- Including intrinsic power-law lags does better, but still poor fit above 10 keV

![](_page_15_Figure_3.jpeg)

#### Reverberation may be in upper kHz QPO

- Reflection models predict flatter lags than seen in 4U 1608-52
- This is more consistent with results when looking at both the upper kHz QPOs in 4U 1728-34 (Peille, Barret & Uttley 2015)

![](_page_16_Figure_3.jpeg)

## Summary

- \* Fe K $\alpha$  lags now detected in a handful of AGN
- Energy and frequency dependence of lags depends on geometry and kinematics of the region
- \* Fitting Fe K $\alpha$  lag in NGC 4151 we imply a **compact corona**
- \* Lots more to do:
  - \* more full reflection spectrum fitting (not just Fe K $\alpha$  line)
  - extended corona models