High-energy monitoring of Seyfert galaxies: the case of NGC 5548 and NGC 4593

Francesco Ursini
Univ. Grenoble-Alpes, IPAG
Università Roma Tre

The Extremes of Black Hole Accretion
Madrid, June 8 2015
NGC 5548

- Object of a multiwavelength campaign in 2013
- The nucleus appeared obscured by a clumpy stream of ionized gas - a disc wind? (Kaastra+15; see talk by M. Cappi)
- 7 high-energy observations with XMM, NuSTAR and INTEGRAL (Ursini+15)

The logs of the simultaneous XMM-Newton, NuSTAR and/or INTEGRAL observations of NGC 5548 during our campaign.

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Satellites</th>
<th>Obs. Id.</th>
<th>Start time (UTC) yyyy-mm-dd</th>
<th>Net exp. (ks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XMM-Newton INTEGRAL</td>
<td>0720110401 10700010001</td>
<td>2013-06-30 2013-06-29</td>
<td>38 62</td>
</tr>
<tr>
<td>2</td>
<td>XMM-Newton NuSTAR INTEGRAL</td>
<td>0720110601 60002044002/3 10700010002</td>
<td>2013-07-11 2013-07-11</td>
<td>37 50 50</td>
</tr>
<tr>
<td>4</td>
<td>XMM-Newton NuSTAR INTEGRAL</td>
<td>0720111101 60002044005 10700010004</td>
<td>2013-07-23 2013-07-23</td>
<td>38 50 52</td>
</tr>
<tr>
<td>5</td>
<td>Chandra NuSTAR</td>
<td>16314 60002044006</td>
<td>2013-09-10 2013-09-10</td>
<td>120 50</td>
</tr>
<tr>
<td>6</td>
<td>XMM-Newton NuSTAR</td>
<td>0720111501 60002044008</td>
<td>2013-12-20 2013-12-20</td>
<td>38 50</td>
</tr>
</tbody>
</table>
NGC 5548: high-energy view

Obs. 2: Broad-band fit, residuals and best-fit model.

Counts s$^{-1}$ keV$^{-1}$

XMM–Newton/pn

NuSTAR/FPMA

NuSTAR/FPMB

INTEGRAL

good constraints on both the primary power law and the reflection component
PEXMON Cut-off energy (keV)

PEXMON Photon Index

PEXMON Norm.

PEXMON Ec (keV)

Reflection component
NGC 4593: XMM/NuSTAR monitoring program

Past observations by BeppoSAX (1998: Guainazzi+98), XMM (2002: Reynolds+04, Brenneman+07), Suzaku (2007: Markowitz&Reeves09) show:

- a strong reflection hump above 10 keV and a prominent, non-relativistic Fe Kα line (truncated disc? distant material?)
- a significant soft X-ray excess below 1 keV (Comptonization?)
- a lower limit for the high-energy cut-off of 150 keV
NGC 4593: XMM/NuSTAR monitoring program

Past observations by BeppoSAX (1998: Guainazzi+98), XMM (2002: Reynolds+04, Brenneman+07), Suzaku (2007: Markowitz&Reeves09) show:

- a strong reflection hump above 10 keV and a prominent, non-relativistic Fe Kα line (truncated disc? distant material?)
- a significant soft X-ray excess below 1 keV (Comptonization?)
- a lower limit for the high-energy cut-off of 150 keV

5 × 20 ks joint observations in early 2015

The logs of the joint XMM-Newton and NuSTAR observations of NGC 4593.

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Satellites</th>
<th>Obs. Id.</th>
<th>Start time (UTC) yyyy-mm-dd</th>
<th>Net exp. (ks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XMM-Newton</td>
<td>0740920201 60001149002</td>
<td>2014-12-29</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>XMM-Newton</td>
<td>0740920301 60001149004</td>
<td>2014-12-31</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>XMM-Newton</td>
<td>0740920401 60001149006</td>
<td>2015-01-02</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>XMM-Newton</td>
<td>0740920501 60001149008</td>
<td>2015-01-04</td>
<td>15</td>
</tr>
<tr>
<td>5</td>
<td>XMM-Newton</td>
<td>0740920601 60001149010</td>
<td>2015-01-06</td>
<td>21</td>
</tr>
</tbody>
</table>
Significant flux variability

Significant spectral variability in the soft band (0.5-10 keV)

... not much in the hard band (3-50 keV)
Each spectrum is fitted separately; we divide the first observation into two intervals.
XMM/pn and NuSTAR/FPMA data fitted with a power law
Baseline model:
warm abs.*(soft excess + cut-off power law + reflection)

\[
\text{bbbody} \quad \text{xillver} \quad \AFe \quad \text{free}
\]

Obs. 2: Broad–band fit, residuals and best–fit model

![Graph showing the broad-band fit, residuals, and best-fit model with energy and counts vs. energy.]

- XMM–Newton/pn
- NuSTAR/FPMA
- NuSTAR/FPMB

Weak hump (R ~ 0.2-0.3)
Fe Kα line flux and EW, primary flux (3–10 keV), photon index

- Line flux
 - $A_{Fe} \approx 2-3$

- Line EW

- $F(3-10 \text{ keV})$

- Photon index (Γ)
Anticorrelation between EW of the Fe Kα line and primary flux

(A)

(B)

\[\rho = -0.92 \quad p\text{-value} = 0.009 \]
Correlation between soft excess and primary flux

Flux (3–10 keV)

p-value = 0.001

Flux (10–50 keV)

p-value = 0.007
Conclusions

NGC 5548 (see Kaastra+15; Mehdipour+15; Arav+15; Ursini+15; di Gesu+15)

- Distant reflector (~ light months)
- Evidence of variable photon index and high-energy cut-off
- Temperature and optical depth of the hot corona show long-term (~15 yrs) variability
- Next step: detailed test of Comptonization models

NGC 4593

- Strong spectral variability in the soft band on a time-scale of days
- Neutral Fe Kα line:
 - flux ~ constant; equivalent width anticorrelated with primary flux
 - accompanied by a weak reflection hump ⇒ two line components?
- Soft excess below 1 keV correlated with the primary emission
- Work in progress!