# The Powerful Black Hole Wind in the Luminous Quasar PDS 456



# James Reeves

Astrophysics Group, Keele University & UMBC

in collaboration with: E. Nardini (Keele), J. Gofford (Keele/UMBC) - M. Costa, G. Matzeu (Keele) - V. Braito (Brera/ASI) - F. Harrison, D Walton (Caltech) - G. Risaliti (Arcetri/CfA), P.T. O'Brien (Leicester), E. Behar (Technion), G. Matt (Roma) T.J. Turner (UMBC), M. Ward (Durham) and NuSTAR team.

The Extremes of Black Hole Accretion, ESAC, Madrid, June 8-10, 2015

## Black hole/host galaxy correlations



Kormendy & Ho 13

AGN feedback is widely accepted as the underlying mechanism ...



# How powerful are disk winds?

The detection of narrow, blueshifted X-ray absorption lines does not provide any solid constraint on the total energetics of a wind

$$\dot{M}_{
m out} \sim \Omega \, N_{
m H} \, m_{
m p} \, v_{
m out} \, oldsymbol{R}_{
m in}$$

★ Solid angle: frequency of BH wind signatures among local AGN

- ★ Column density: modelling of absorption by photo-ionised gas
- ★ Outflow velocity: line's energy shift following identification
- ★ Launch radius: ionisation state of the gas and escape velocity

It is still unclear whether disk winds have sufficient mechanical energy to power feedback on galactic scales

#### How powerful are disk winds?



### PDS 456: the Rosetta Stone of AGN disk winds

Most luminous radio-quiet AGN in the local Universe

 $M_B \sim -27 ~~ L_{
m bol} \sim 10^{47} \, {
m erg \, s^{-1}} ~~ M_{
m BH} \sim 10^9 \, M_{igodot}$ 



Systematic detection of a deep trough above 7 keV rest-frame: evidence for a large column of highly ionised matter outflowing at about one third of the speed of light



Ideal target for studying BH winds in the Eddington-limited regime

2013/14 campaign: 5 simultaneous XMM + NuSTAR observations

#### The revolutionary broadband view



A persistent, wide-angle wind

P-Cygni-like profile resolved at any epoch (aperture > 50° from FWHM)





### Some relevant numbers

$$\dot{M}_{
m out} \sim rac{\Omega}{4\pi} imes rac{N_{
m H}}{10^{23}\,{
m cm}^{-2}} imes rac{v_{
m out}}{c} imes rac{R_{
m in}}{10^{15}\,{
m cm}} \; M_{igodot} \,{
m yr}^{-1}$$

All the information can now be determined from the data

The solid angle is obtained from the emitted/absorbed luminosity ratio, and the launch radius from the variability timescale

$$\dot{M}_{
m out} \sim 10\,M_{igodot}\,{
m yr}^{-1} \Rightarrow P_{
m kin} \sim 2 imes 10^{46}\,{
m erg\,s}^{-1} \sim 0.2\,L_{
m bol}$$

The deposition of a few % of the total radiated energy is enough to prompt significant feedback on the host galaxy (*Hopkins & Elvis 10*). Over a lifetime of 10<sup>7</sup> yr the energy released through the accretion disk wind likely exceeds the binding energy of the bulge

$$E_{
m wind} \sim 10^{61}\,{
m erg} \sim 3 imes M_{
m bulge}\,\sigma^2$$

## Alternative interpretations



#### Gallo & Fabian 11

This model requires a strong reflection component, and has been successfully applied to PG 1211+143, for which claims of no wind also come from recent NuSTAR observations (Zoghbi+15, but see Pounds et al. talk!)

#### Can we account for the iron K profile in PDS 456 without a Disk Wind? (Costa et al. 2015)

In this scenario, the disk reflection spectrum itself is **absorbed by ionized outer surface layers** of rotating disk - both reflection and absorption (transmitted) spectra are relativistically blurred.

Blue-shifted absorption through transverse Doppler shift inherent in inner disk without need for fast outflow.





r<sub>h</sub> ~1.25Rg, log **ξ**= 0.3, R>10.

Extreme parameters. Reflection produces poor fit ( $\Delta \chi^2 = 40$ ) at Fe K.

# Blurred Reflection cannot account for PDS 456...

Thus reflection alone *cannot* account for iron K absorption profile – needs wind profile.

**No hard excess** in the 2013/14 NuSTAR data <u>rules out strong reflection</u> (steep continuum,  $\Gamma$ ~2.4, out to 40 keV)

Reflection models over-predict the hard X-ray flux observed in all 5 NuSTAR observations.

20

Rest-frame energy (keV)

NuSTAR – all 5 obs

5

0

<sub>2</sub>χ<sub>∇</sub>

-10

-15



Rest-frame energy (keV)

## Radiatively Driven Disk Winds

- Disk winds simulations of Sim et al. (2010), Proga & Kallman (2004)
- Produces blue-shifted Fe K absorption





Example disk wind spectra

#### Fe K redwing via emission from wind

Blue-shifted absorption from I.o.s along wind

#### The Disk wind profile of PDS 456 (Sim et al. 2010 model)

Launch radius at 32  $R_G$ . Inclination = 70°. Mass outflow rate  $M_{dot} = 0.25 M_{Edd}$ .  $L_K = 0.15 L_{Edd}$ . Observations 2 weeks apart. Wind in photoionization equilibrium, ionizing luminosity decreasing from  $L_{2-10}/L_{Edd} = 1.4\pm0.2\%$  to  $0.6\pm0.1\%$  in proportion to continuum.



# Summary

★PDS 456 is an exceptionally luminous AGN in the local Universe, yet representative of an accreting SMBH during its quasar phase and thus offering a unique view of the possible mechanism that links the growth of the central black holes to the evolution of their host galaxies over

cosmic time.

The new campaign XMM + NuSTAR campaign allowed the first direct measure of the mass-loss rate and total energetics of a disc outflow, whose mechanical power is largely consistent with the requirements of

feedback models.

\*At the peak of the quasar epoch, such powerful winds would have provided the energy and momentum to self-regulate the SMBH growth

and control the star formation in stellar bulges.

 $\star$  The present-day scaling relations are left as a record of this process.

Nardini et al. 2015.