

ULX behaviour: the University ULX behaviour: the University Univer

Tim Roberts

Matt Middleton (Cambridge) Andy Sutton (MSFC) Mar Mezcua (CfA) Dom Walton (Caltech) Lucy Heil (Amsterdam)

The ultraluminous state

- ULX X-ray spectra different to sub-Eddington BHs (Stobbart et al. 2006; Gladstone et al. 2009; Bachetti et al. 2013 etc...): new ultraluminous state
- Confirmed as super-Eddington accretion onto stellar-mass BH by Motch et al. (2014)

Key question now: how does this work?

Wednesday 10th June 2015

Sutton, Roberts & Middleton (2013)

Key behaviours

Wednesday 10th June 2015

Super-Eddington models

- Super-Edd models naturally explain 2-component spectra as optically thick wind + inner disc
- Poutanen et al. (2007) inclination critical for observed spectrum: so on-axis HUL, off-axis SUL
 - Soft X-rays prop. to mdot, hard depend on viewing angle

Evolution of behaviour

Middleton et al. (2015)

Data consistent with wind model

Best fitting models for multiple epochs of XMM data – green spectra when also variable. Red/blue are soft/hard components for least (dotted) and most (solid) luminous epochs

Wednesday 10th June 2015

Origin of variability

- Variability seen predominantly in wind-dominated ULXs
- Face-on systems show little variability
- Explanation: extrinsic hard variability imprinted by edge of clumpy wind passing through line of sight

Covariance spectra

Middleton et al. (2015)

Variability is constrained solely in the hard component – consistent with clumpy wind!

From Middleton et al. (submitted). Top panels: model plus decomposition, red data points:0.9 – 3 mHz, black: 3 – 200 mHz, both taken as covariance spectra against reference 1.5 – 3 keV band. Bottom panels: fits to covariance data. Black – diskbb+nthcomp with ratio fixed as per full model; green – diskbb+nthcomp with ratio free; blue – pure nthcomp

Wednesday 10th June 2015

Winds

- Interpretation predicated on presence of wind
- Any direct evidence for presence of wind material?
- No narrow emission lines around Fe K in deep Suzaku observation of a HUL object, Ho IX X-1
- But HUL so not viewed through wind!

Walton et al. (2013)

feature; bottom: limits on line equivalent width

Evidence for winds?

Middleton et al. (2014).

Combined NGC 5408 data – left: continuum model; right: continuum model plus broad, partially ionised absorber

- Long known that soft ULXs can have extensive fit residuals
- Can be fitted by thermal plasma
- □ But also explained by absorption from broadened, partially ionised and blueshifted $(v \approx 0.1c)$ material – outflowing wind!

Wednesday 10th June 2015

It's not SF-related plasma

Sutton et al. in prep.

- Expected L_{x,SFR} (e.g. Mineo et al. 2012) << observed L_{x,plasma}
 In NGC 5408 – SFRs
- located within *XMM* footprint – but resolved by *Chandra* (left)
- > 2/3 of 'plasma' remains spatially unresolved

HST WFPC2 F336W image of NGC 5408, with the XMM footprint in green and Chandra in red. The two main SF clusters are indicated by red arrows.

Evidence for a wind from behaviour

A corollary to super-Eddington ULXs

- Ultraluminous state & associated behaviour provides a template for stellar mass BH ULXs
- But different (e.g. classic sub-Eddington state) behaviours could reveal different underlying objects (e.g. ESO 243-49 HLX-1, Servillat et al. 2011)
- For example spectrally hard but highly variable ULX in M51 (Earnshaw talk)
- □ Also extreme ULXs ($L_x > 5 \times 10^{40}$ erg s⁻¹) show sub-Eddington behaviour (Sutton et al. 2012)

Extreme ULXs as IMBHs?

Sutton et al. 2015

- NGC 5907 ULX not IMBH spectral turnover (Sutton et al. 2013b, Walton et al. 2015)
- □ IC 4320 HLX revealed as $z \sim 2.8$ QSO; other eULXs peak at ~ 10⁴¹ erg s⁻¹ so 100 M_{\odot} BHs at 10 × Eddington?

Left panel: green – IC 4320 HLX (before QSO ID); grey - M82 X-1; blue – Cartwheel N10; red – NGC 470 ULX.

<u>Right panel:</u> ESO 243-49 HLX-1

Wednesday 10th June 2015

A new IMBH candidate in a hard state

Conclusions

- The coarse behaviour of many nearby ULXs can be understood in the context of super-Eddington accretion, including a massive wind
 - Direct evidence for wind now emerging
 - But will this model survive further, more detailed data & techniques, e.g. lags, calorimeter spectra?
- Some minority ULX populations could be revealed by differing behaviour – IMBHs may still be identified via sub-Eddington states