Focused winds in high mass X-ray binaries: the case of Cyg X-1/HDE 226868

Victoria Grinberg

MIT Kavli Institute for Astrophysics and Space Research

M.A. Leutenegger (CRESST UMBC / NASA Goddard), N. Hell (Remeis/ECAP & LLNL), K. Pottschmidt (CRESST UMBC / NASA Goddard), M. Böck (MPifR), J.A. García (CfA), M. Hanke (Remeis/ECAP), M.A. Nowak (MIT), J.O. Sundqvist (Delaware & LMU Munich), R.H.D. Townsend (Wisconsin-Madison), and J. Wilms (Remeis/ECAP)

June 9, 2015

Focused – clumpy – winds in high mass X-ray binaries: the case of Cyg X-1/HDE 226868

Victoria Grinberg

MIT Kavli Institute for Astrophysics and Space Research

M.A. Leutenegger (CRESST UMBC / NASA Goddard), N. Hell (Remeis/ECAP & LLNL), K. Pottschmidt (CRESST UMBC / NASA Goddard), M. Böck (MPifR), J.A. García (CfA), M. Hanke (Remeis/ECAP), M.A. Nowak (MIT), J.O. Sundqvist (Delaware & LMU Munich), R.H.D. Townsend (Wisconsin-Madison), and J. Wilms (Remeis/ECAP)

June 9, 2015

Cyg X-1 / HDE 226868 system

high mass X-ray binary bright, persistent source companion: O-type supergiant line-driven winds (CAK-mechanism) mass loss: $\sim 2 \times 10^{-6} M_{\odot} vr^{-1}$

ISM equivalent hydrogen density: $\sim 0.5 \times 10^{22} \, \mathrm{cm}^{-2}$ (Xiang et al., 2011)

Orbital variability

Hanke 2011

- orbital period: 5.6 days
- inclination: 27° (Orosz et al., 2011)

- orbital variability of overall absorption
 - \Rightarrow focussed wind
- orbital variability of 'dip'-occurence
 - \Rightarrow individual clumps in the wind

RXTE campaign

RXTE campaign

typical exposure: $\sim 2 \text{ ks}$

RXTE campaign

typical exposure: $\sim 2 \text{ ks}$

Orbital variability of absorption

no disk component

disk component

Grinberg et al., 2015

disk component

Orbital variability of absorption: soft and intermediate states

disk component \Rightarrow large uncertainties in $N_{\rm H}$

wind strongly ionized \Rightarrow mainly transparent to X-rays

Orbital variability of absorption: soft and intermediate states

ionized material \Rightarrow line-driving mechanism breaks down \Rightarrow changes in the geometry of the system

Čechura & Hadrava, 2015

Orbital variability of absorption: hard state

Grinberg et al., 2015

Orbital variability of absorption: hard state

Grinberg et al., 2015

How important is absorption?

Grinberg et al., 2013, 2015

Hard state: a focussed wind model

 toy model for a focussed CAK wind (Gies & Bolton, 1986; Friend & Castor, 1982)

(Owocki&Cohen 2006, Sundqvist et al. 2012, but see also Oskinova et al. 2012)

(Fig. from Sundqvist et al. 2012)

- discrete, spherical clumps
- β velocity law
- no focussed wind component (yet)
- known: stellar parameters, terminal velocity, mass loss rate
- variable: number of clumps N and terminal porosity length h_{∞}

Grinberg et al., 2015

Grinberg et al., 2015

Grinberg et al., 2015

agreement between data (black) and model (red)

 $h_\infty \approx R_*$ agrees with values for single O stars

non-Gaussian tail for $\phi_{\rm orb}\approx$ 0 in data

 \Rightarrow structure in wind \Rightarrow focussed wind? non-spherical clumps?

average values (circles) and standard deviations (error bars on the average values) absorption changes highly significant
proof of principle for applicability of clumpy wind models to HMXBs
absorption variability can be used to constrain porosity and study clump distribution and shape

- clumpy wind models with focussed wind component and/or more compex clump-shapes
- variability on shorter time scales with Suzaku, Chandra & Astro-H
- diagnosis of individual clumps with high resolution spectroscopy