A search for periodicities from a ULX in the LINER galaxy NGC 4736

A. Akyuz (1), S. Balman (2), H. Avdan (1), S. Avdan (1)

(1) Cukurova University, Adana – Turkey

(2) Middle East Technical University , Ankara-Turkey

Ultraluminous X-ray sources (ULXs) :

ULXs are off-nuclear point-like sources that have X-ray luminosities $(L_x > 3 \times 10^{39} \text{erg/s})$ above the Eddington limit of a 20M $_{\odot}$ black hole(BH).

- > The true nature of these objects is not clear ...
- much like X-ray binaries

Current models propose several alternatives to explain their high luminosities :

- It could either be due to the geometric beaming if ULXs are powered by an accreting stellar BH (King et al. 2001)
- the super-Eddington fluxes originating from disks (Begelman 2002).
- some ULXs could be powered by intermediate-mass BHs (Miller & Colbert 2004).

X-ray spectral and temporal analyses allow us to study the nature of ULXs and to constrain BH masses in ULXs.

main purpose is to search Quasi-Periodic Oscillations (QPOs) ...

Up to now, QPOs have been detected from a few ULXs in nearby galaxies.

(using the highest QPO frequency)

The second ULX X-2 (X42.3+59) in M82

- QPOs at (3–4) mHz from this transient source (Feng et al. , 2010)
- three Chandra and two XMM-Newton obs.
- > the BH mass in the range of $(1.2 4.3) \times 10^4 \text{ M}_{\odot}$
- by scaling the QPO frequency to that of their type (A/B) of QPOs in stellar mass BHs.

X-ray power spectra of X42.3+59 in the 1-8 keV.

The **dotted line** indicates the **Gaussian** + **constant model** that fit the spectrum. Powers are normalized according to Leahy et al. (1983).

LIST OF ULAS							
Galaxy	ULX	R.A.	Dec.	L_x	QPO Frequency	Period	Ref.
				$(10^{39} \text{ erg s}^{-1})$	(mHz)	(hour)	
M82	CXO J095550.2+694047	09:55:50	+69:40:47	40 - 50	50 - 166	1488	1
	CXO J095551.1+694045	09:55:51	+69:40:45	10 - 25	3 - 4	-	2
M74 (NGC 628)	CXOU J013651.1+154547	01:36:51	+15:45:47	0.5 - 1.3	0.1 - 0.4	-	3
Holmberg IX	X-1	09:57:54	+69:03:46	8.3 - 8.4	202.5	-	4
NGC 5408	X-1	14:03:20	-41:22:60	8.7	10 - 40	2760	5
NGC 6946	X-1	20:35:01	+60:11:31	8.4 - 12	8.5	-	6
M51 (NGC 5194)	X-7	13:30:01	+47:13:44	0.1 - 2		1.7 - 2.1	7
NGC 3379	Source 6	10:47:50	+12:34:57	3.		8-10	8
NGC 1313	X-2	03:18:20	-66:29:10	30		146.88	9
NGC 4490	CXOU J123030.3+413853	12:30:30	+41:38:53	0.2 - 1.1		6.4	10

TABLE 1

LIGT OF ULVE

NOTE.—(1) Strohmayer & Mushotzky 2003; Fiorito & Titarchuk 2004; Dewangan et al. 2006; Kaaret et al. 2006; Mucciarelli et al. 2006; Kaaret et al. 2006; Feng & Kaaret 2007. (2) Feng et al. 2010. (3) Liu et al. 2005. (4) Dewangan et al. 2006. (5) Strohmayer et al. 2007; Strohmayer 2009; Dheeraj & Strohmayer 2012. (6) Rao et al. 2010. (7) Liu et al. 2002; Dewangan et al. 2005 (8) David et al. 2005. (9) Liu et al. 2009. (10) Esposite et al. 2013

List of ULXs exhibit X-ray QPO frequencies or periodicities

ULX X-2

Galaxy	Source	Source Separation (arcmin)		Chandra ID	
NGC 4736	XMM-2	0.9		CXOU J125048.598+410742.49	
41:00:00.0 05:00.0 10:00.0 15:00.0			(b) 12:00.0 0.002:00 0.002:00 02:00.0 02:00.0 02:00.0 02:00.0		
30.0	51:00.0 : Right Ascension (J2000)	30.0 12:50:00.0	30.0 20	1.0 10.012:51:00.050.0 40.0 30.0 50:20.0 Right Ascension (J2000)	

Right ascension

(Liu 2011) detected as a point source using the Chandra archival data with no reference to its transient nature.

Akyuz et al.2013 , XMM-Newton and Chandra archival data reveal its transient nature

Lin et al. (2013) report a highly variable persistents source or recurrent transient with flux variation factror of > 100 with ROSAT, XMM-Newton and Chandra archival data

TABLE 2

LIST OF OBSERVATIONS THAT USED IN THIS STUDY

	ObsID	Exposure	Date
Chandra XMM-Newton	808 0404980101	(ka) (49.8) (55)	2000.05.13 2006.11.27

- we used the XMM-Newton and the Chandra archival observations which have the longest exposure for the source.
- ❑ high background flarings from XMM-Newton (ObsID 0404980101) data set, which removed the last ~ 17 ks of the observation.
- the shorter exposures (XMM-Newton ObsID 0094360701, Chandra ObsID 9553) also searched however, there was no indication of significant <u>QPOs or periodicities at any frequency</u>

Data reductions

- the SAS (Science Analysis Software) v.12.0 for XMM -Newton
- the CIAO (Chandra Interactive Analysis of Observations) v4.3 with the CALDB (Calibration Database) version 4.4.2 for Chandra.
- In XMMNewton:

Extraction region --- 18" the source (R.A. = 12h 50m 48s.6, Dec = 41° 07'43")

In the Chandra observation, extracted from a circular region of 2"
the source (R.A. = 12h 50m 48s.6, Dec = 41° 07'42".5) in Chandra.

Background photons were extracted using a proper region from a location with no source contamination. the X-ray timing variations and spectral properties of the **ULX X-2** in the were searched in the LINER galaxy NGC 4736.

To search the QPO the averaged power spectrum obtained using the XMM-Newton pn observation

Light curve was sampled at 0.1 s

Miyamota normalization in units (rms/mean)²/Hz (Miyamoto et al. 1991).

The best fitting composite model (Lorentzian+ constant) gives the centroid frequency of QPO = $0.53^{+0.09}_{-0.35}$ mHz with GFWHM = 0.10 mHz. Quality factor:

Q = QPO/ОFWHM = 5.3
 (signals with Q > 2 are called QPOs)

The constant model component which represents the continuum value in the PDS has a value of ~ 9

the same analysis for the Chandra (ObsID 808) data.

The light curve was sampled at 1 s

fitted the PDS using the same

(Lorentzian + constant) model

the best fitting model has a QPO centroid frequency of

 $s \ge QPO=0.73^{+0.16}_{-0.14} \text{ mHz}$

→ σ_{FWHM} = 0.10 mHz (Q = 7.3) and

a constant model value of ~336 (rms/mean)²/Hz.

In addition, we detected a possible periodic oscillation or another QPO

 $\sim 5.2 \times 10^{-5}$ Hz (~5.4 hrs) $\,$ > 3 σ

the PDS obtained from a single Fast Fourier Transform (FFT).

> The best fitting model has a centroid frequency of

 $(5.2\pm2.0) imes10^{-5}$ Hz , width of $\sigma_{_{FWHM}}$ = $0.42 imes10^{-4}$ Hz

constant noise level of ~2.22

in the XMM-Newton data such low frequencies were not revealed.

Energy spectrum of X-2 obtained with the ACIS-S observatin (ObsID 808)

Spectral Model Parameters For NGC 4736 X-2

	XMM-Newton ^a	Chandra
$N_H(10^{22}) \ cm^{-2}$	$0.02\substack{+0.01\\-0.01}$	$0.07\substack{+0.06\\-0.03}$
Г	$1.72_{-0.13}^{+0.14}$	$2.55 \substack{+0.38 \\ -0.26}$
$kT \ (keV)$	$0.75 \substack{+0.06 \\ -0.04}$	-
$K_{PL}^{b} (10^{-5})$	$5.79^{\pm 1.40}_{-1.10}$	$0.77\substack{+0.28\\-0.18}$
K _D ^c	$0.05\substack{+0.02\\-0.01}$	-
χ^2/dof	530.81/517	8.27/11
F^{d} (10 ⁻¹³) erg cm ⁻² s ⁻¹	7.57	0.37
$L^e (10^{38}) erg s^{-1}$	16.73	0.85

PL+DISKBB for XMM-Newton, PL for Chandra

Note.—(a) XMM-Newton model parameters were taken from Akyuz et al. (2013). (b) Normalization parameter of the PL model in units of photon cm⁻² s⁻¹ keV⁻¹ at 1 keV. (c) Normalization parameter of the DISKBB model. K_D = $[(R_{in}/km)/(D/10kpc)]^2 \times cos\theta$, where R_{in} is the inner disk radius, D is the distance to the source and θ is the angle of the disk. (d) Unabsorbed flux in the (0.3–10) keV energy band. (e) These values have been calculated using a distance of 4.3 Mpc (Winter et al. 2006).

Avdan et al, 2014

EPIC pn data points and best-fitting model are shown in **black**, data from MOS1 and MOS2 are shown green and red, respectively. Considering the inverse proportionality between the BH mass and the QPO frequencies

 $M_{BH}(ULX) \sim \left[\frac{v_{QPO}(X)}{v_{QPO}(ULX)}\right] \times M_{BH}(X)$ X : reference source (Dewangan et al. 2006a) the same scaling argument :

ULX	Luminosity	QPO Frequency	Mass
	$(10^{38} \text{ erg } s^{-1})$	(10^{-4} Hz)	(M _☉)
NGC 628 (Liu et al. 2005) NGC 4736 (Avdan et al. 2014)	4.5-13.4 0.8-16.7	$ \begin{array}{c} 1-4 \\ 5-7 \end{array} $	$(2-20) \times 10^3$ $(2-400) \times 10^2$

> assuming the source emits at the Eddington limit (LEdd $\sim 1.3 \times 10^{38}$ (M/M \odot)erg/s)

Мвн~10 М \odot (using Lx ~1.7 imes 10³⁹ erg /s).

Also considering the dominant contribution from the disk and Disk Black Body model parameters,

$$K_D = \left[\left(\frac{R_{in}}{km}\right) / \left(\frac{D}{10 \ kpc}\right)\right]^2 \times \cos\theta$$

the inner disk radius,

 $R_{in} \sim 96(\cos\theta)^{-0.5}$

 $M_{BH} \sim (R_{in}/8.86\alpha) \times M_{\odot}$

(α =1 Schwarzshild BH θ = 89° for upper limit)

 $M_{BH} < 80 \text{ M}_{\odot}$

(Makishima et al. 2000).

Considering this mass range of $10 \text{ M}_{\odot} < M_{BH} < 80 \text{ M}_{\odot}$

 \blacktriangleright the compact source in X-2 is probably a stellar mass BH (M \leq 20M $_{\odot}$) or a massive-stellar BH $(20M_{\odot} \le M \le 100M_{\odot})$ (Feng & Soria 2011).

Summary

- Power density spectrum of this source reveals a QPO peak at ~ 0.73 mHz (rms variability of 16%) using the Chandra data (in the year 2000-lower state of the source).
- The XMM-Newton data analysis indicates a peak at ~ 0.53 mHz (rms variation of 5%) (in the year 2006-higher state of the source).
 These recovered QPOs overlap within errors and may be the same oscillation.
- > In addition, we detect a long periodicity or a QPO in the Chandra data of about $\sim 5.2 \times 10^{-5}$ Hz (~5.4 hrs) > 3 σ confidence level.
- If this is a QPO, it is the lowest QPO detected from a ULX.

➢ it is also possible that this is the orbital period of the underlying binary which, then, it will be more consistent with a stellar/massive- stellar size BH.

the source shows low and high states of luminosity and there is not enough data to conclusively decide its classification.

THANK YOU ...

