

The XMM-Newton spectralfit database

Amalia Corral

Institute for Astronomy, Astrophysics, Space Applications, and Remote Sensing

(IAASARS, NOA, Greece)

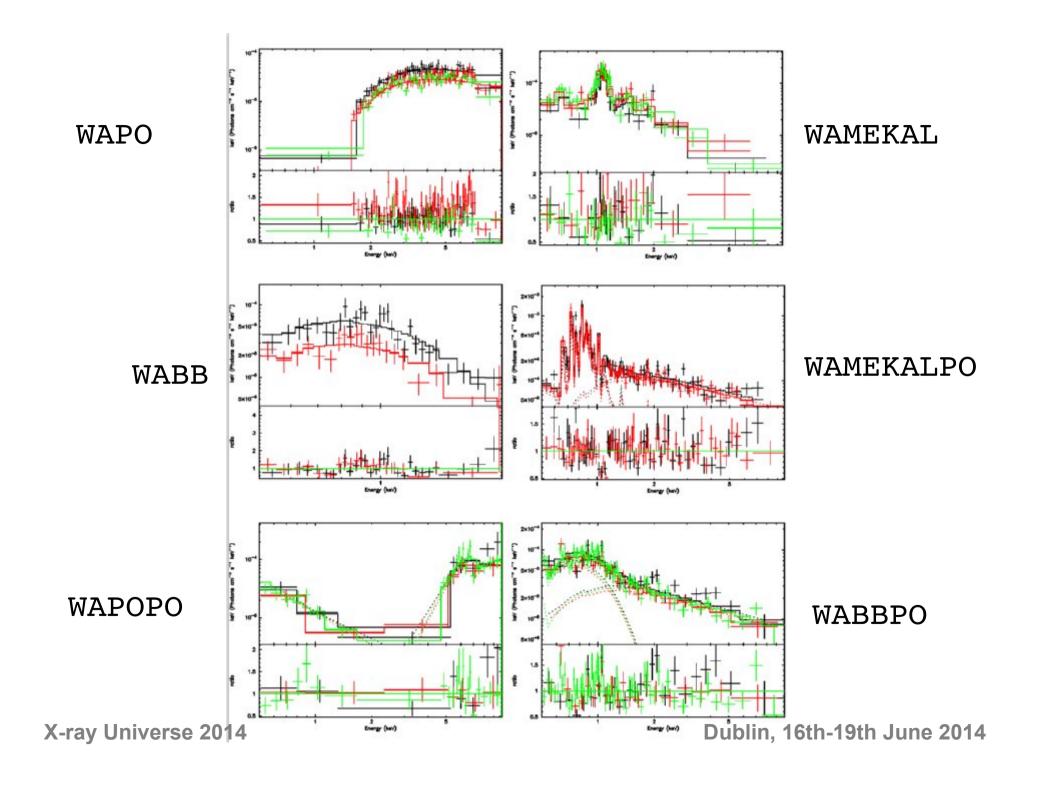
I. Georgantopoulos (PI), X-ray group (IAASARS), XMM-SSC (University of Leicester, UK)

The project (XMMFITCAT)

- ESA (PRODEX) funded project carried out by the X-ray group at NOA in collaboration with the XMM-Newton Survey Science Centre (XMM SSC) in the University of Leicester.
- Goal: Use the spectral data from the XMM-Newton Serendipitous source catalogue (latest version 3XMM-DR4) to construct a database of spectralfitting results.
 - Construct samples of X-ray sources according to spectral properties.
 - Pinpoint "peculiar" sources.
 - Get X-ray properties of samples selected at other wavelengths.

3XMM-DR4 spectral data

- **3XMM-DR4** is the largest catalogue of X-ray sources built to date. Photometric information for more than 500,000 detections of ~ 370,000 sources.
- 3XMM-DR4 also contains pipeline extracted spectra and acillary matrices for detections with EPIC net (background subtracted) counts > 100 counts in 0.2-12 keV: 120,000 detections, ~ 85,000 unique sources.
- XMMFITCAT: only 3XMM-DR4 spectra with > 50 cts in 0.5-10 keV per instrument and exposure.
 - >114,000 detections, ~78,000 unique sources


Spectral models

- The aim of the database is not to find the "best-fit model" (limited number of models), but to obtain a representation of the spectral shape as good as possible.
- Six models implemented (most commonly observed spectral shapes), and three energy bands defined.

Energy range (keV)		MDR4 nds	XMMFITCAT bands			
0.2 - 0.5	1					
0.5 - 1.0	2		Soft			
1.0 - 2.0	3	Total	3011	Full		
2.0 - 4.5	4	Total	Hard	Full		
4.5 - 10	5		Паги			
10 -12	3					

Spectral models

- Simple models are applied to all detections:
 - **Absorbed power-law** in **Full**, **Hard**, and **Soft** bands: Γ , N_H , Norm
 - Absorbed thermal model in Full and Soft bands: N_H,
 kT, Norm
 - Absorbed black-body model in Soft band: N_H, kT, Norm.
- Complex models are applied if EPIC counts > 500 counts, and only in the Full band.
 - Thermal plus power-law: N_{H1} , kT, Norm1, N_{H2} , Γ , Norm2
 - Black-body plus power-law: N_H , kT, Norm1, Γ , Norm2
 - **Double power-law**: N_{H1} , $\Gamma 1$, Norm1, N_{H2} , $\Gamma 2$, Norm2

Automated fitting

- Each detection fitted separately -> spectral-fitting results for each detection, not for each source.
- All models are applied to all detections (depending on number of counts).
- For each model, best-fit parameters and errors are computed (90% level); and fluxes and errors (90% level, in each XMMFITCAT energy band); an estimate of goodness of fit.

Automated fitting - Goodness of fit

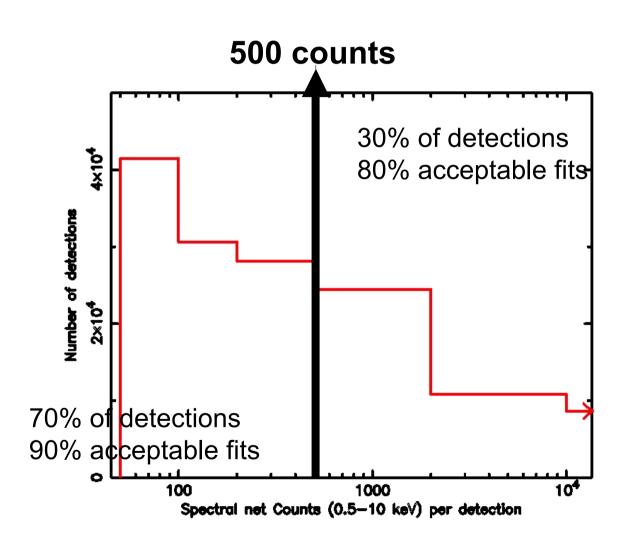
- Xspec 12.7.1, C-stat → no goodness of fit.
- Goodness: performs a number of simulations and returns the percentage of simulations that gives a lower value of the statistic. As a guide to the user: acceptable fit if goodness < 50%, preferred model: the simplest one with the lowest goodness value.
- Also provided χ^2 as a test statistic, when using C-stat as fit statistic (goodness < 50 \Leftrightarrow χ^2_c < 1.5).

XMMFITCAT

- Output: one row for each source detection, and 214 columns containing information about the observation, a summary of the spectra-fitting, and spectral-fitting results for each spectral model applied (best-fit parameters and errors, fluxes, and goodness of fit)
- ~ 18% of sources: multiple observations with spectra: spectral variability studies.

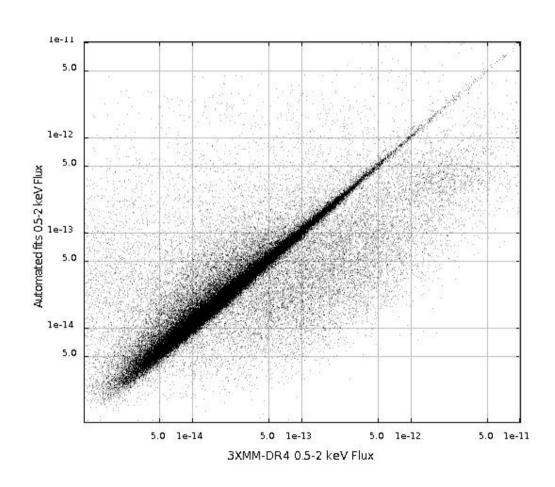
IAUNAME	DETID	SRCID	OBS_ID	SRC_NUM	SRC_HEX	SC_RA	SC_DEC	T_COUNTS	H_COUNTS	S_COUNTS	GNH	A_FIT	P_MODEL
3XMMJ000548.6+200150	1833	19268	0600540501	65	0041	1.45289	20.03057	59.16699	-99.	-99.	0.03516	✓	1
3XMMJ000548.8+200627	1836	7186	0101040101	14	000E	1.45339	20.10758	96.23369	-99.	80.12826	0.03564		0
3XMMJ000548.8+200627	1837	7186	0600540601	9	0009	1.45339	20.10758	580.6626	139.84521	437.29176	0.03564	\checkmark	0
3XMMJ000548.8+200627	1838	7186	0306870101	7	0007	1.45339	20.10758	255.86811	70.98639	181.71661	0.03563	\checkmark	0
3XMMJ000548.7+201513	1839	13087	0600540601	104	0068	1.4532	20.25367	79.26334	50.03315	-99.	0.03649	\checkmark	0
3XMMJ000548.8+200627	1840	7186	0600540501	9	0009	1.45339	20.10758	422.29079	100.01115	320.50835	0.03564	\checkmark	0
3XMMJ000549.5+201308	1845	7101	0600540601	10	000A	1.45629	20.21902	668.22002	179.17344	484.68514	0.03628	✓	0
3XMMJ000549.5+201308	1846	7101	0306870101	4	0004	1.45629	20.21902	390.1877	103.21101	284.48779	0.03628	✓	0
3XMMJ000549.5+201308	1848	7101	0101040101	11	000B	1.45629	20.21902	164.87083	-99.	124.67539	0.03628	✓	0
3XMMJ000549.5+201308	1849	7101	0600540501	8	8000	1.45629	20.21902	519.88876	108.72877	406.54006	0.03628	✓	0
3XMMJ000550.0-344757	1855	18222	0404910101	15	000F	1.4585	-34.79917	95.76618	-99.	64.51116	0.01318	~	0
3XMMJ000550.4-343742	1861	33310	0404910101	18	0012	1.46033	-34.6285	87.80419	-99.	62.66844	0.01329		0
3XMMJ000550.7+201716	1864	7812	0306870101	14	000E	1.46166	20.28797	236.87845	112.47384	121.87379	0.03665	\checkmark	0
3XMMJ000550.7+201716	1865	7812	0101040101	17	0011	1.46166	20.28797	110.29757	-99.	68.56283	0.03665	\checkmark	1
3XMMJ000550.7+201716	1866	7812	0600540601	33	0021	1.46166	20.28797	282.75284	142.658	138.45195	0.03665	\checkmark	0
3XMMI000550_7+201716	1867	7812	0600540501	31	001F	1.46166	20.28797	123.73808	51.90408	70.41663	0.03665	V	0
X-ray Universe 2014 Dublin, 16th-19th June 2014													

XMMFITCAT

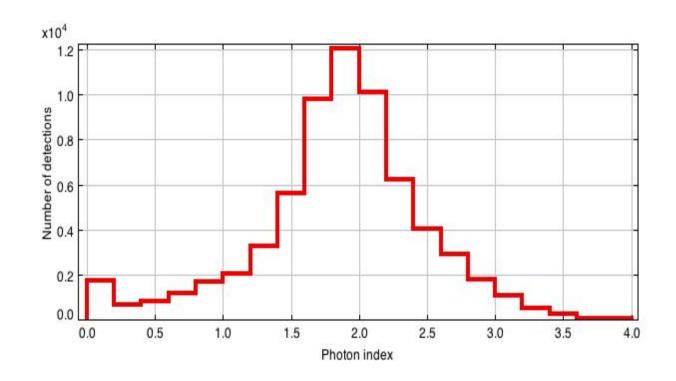

- Output: one row for each source detection, and 214 columns containing information about the observation, a summary of the spectra-fitting, and spectral-fitting results for each spectral model applied (best-fit parameters and errors, fluxes, and goodness of fit)
- ~ 18% of sources: multiple observations with spectra: spectral variability studies.

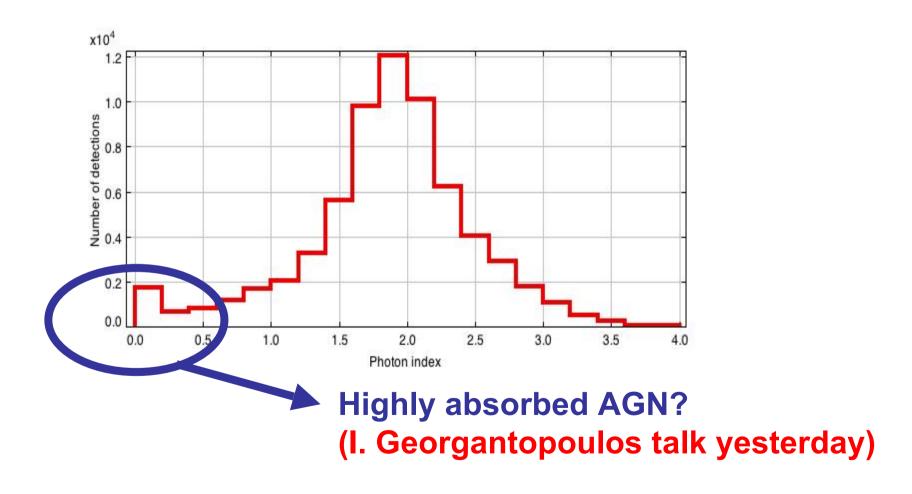
								3		- DR4			
IAUNAME	DETID	SRCID	OBS_ID	SRC_NUM	SRC_HEX	2 21	SC_DEC	I_COUNTS	H_COUNTS	S_COUNTS	GNH	A_FIT	P_MODEL
3XMMJ000548 +200150	1833	19268	0600540501	65	0041	1.452	20.0 .57	59.16699	-99.	-99.	0.03516	~	1
3XMMJ00 348.8+200627	1836	7186	0101040101	14	000E	1.45339	10758	96.23369	-99.	80.12826	0.03564		0
3XM1 J00548.8+200627	1837	7186	0600540601	9	0009	1.45339	20. 2758	580.6626	139.84521	437.29176	0.03564	\checkmark	0
3X MJ000548.8+200627	1838	7186	0306870101	7	0007	1.45339	20.10.8	255.86811	70.98639	181.71661	0.03563	\checkmark	0
MMJ000548.7+201513	1839	13087	0600540601	104	0068	1.4532	20.2536	79.26334	50.03315	-99.	0.03649	\checkmark	0
XMMJ000548.8+200627	1840	7186	0600540501	9	0009	1.45339	20.10758	422.29079	100.01115	320.50835	0.03564	\checkmark	0
3XMMJ000549.5+201308	1845	7101	0600540601	10	000A	1.45629	20.21902	668.22002	179.17344	484.68514	0.03628	\checkmark	0
3XMMJ000549.5+201308	1846	7101	0306870101	4	0004	1.45629	20.21902	390.1877	103.21101	284.48779	0.03628	✓	0
XMMJ000549.5+201308	1848	7101	0101040101	11	000B	1.45629	20.21902	164.87083	-99.	124.67539	0.03628	✓	0
MMJ000549.5+201308	1849	7101	0600540501	8	8000	1.45629	20.2190	519.88876	108.72877	406.54006	0.03628	\checkmark	0
3XI MJ000550.0-344757	1855	18222	0404910101	15	000F	1.4585	-34.79 17	95.76618	-99.	64.51116	0.01318	\checkmark	0
3XMN ₀ 20550.4-343742	1861	33310	0404910101	18	0012	1.46033	-34 285	87.80419	-99.	62.66844	0.01329		0
3XMMJ006.50.7+201716	1864	7812	0306870101	14	000E	1.46166	0.28797	236.87845	112.47384	121.87379	0.03665	\checkmark	0
3XMMJ000550.7 201716	1865	7812	0101040101	17	0011	1.46	20.28797	110.29757	-99.	68.56283	0.03665	\checkmark	1
3XMMJ000550.7+2017	1866	7812	0600540601	33	0021	1.46166	20.28797	282.75284	142.658	138.45195	0.03665	\checkmark	0
3XMMI000550_7+201716	1807	7012	0600540501		ou1F	1.46166	20.28797	123.73808	51.90408	70.41663	0.03665	\checkmark	0
X-ray Univers	se 20	14							Dub	iin, 16th	-19th J	une	2014

XMMFITCAT


- Output: one row for each source detection, and 214 columns containing information about the observation, a summary of the spectra-fitting, and spectral-fitting results for each spectral model applied (best-fit parameters and errors, fluxes, and goodness of fit)
- ~ 18% of sources: multiple observations with spectra: spectral variability studies.
 Fit summary

									_			J		
IAUNAME		DETID	SRCID	OBS_ID	SRC_NUM	SRC_HEX	SC_RA	SC_DEC	T_COUNTS	H_COUNTS	S_COUNTS	GNH	A_FIT	P_MOD
3XMMJ0005	48.6+200150	1833	19268	0600540501	65	0041	1.45289	20.03057	59.16699	-99.	-99.	0.03516	\checkmark	1
3XMMJ0005	48.8+200627	1836	7186	0101040101	14	000E	1.45339	20.10758	96.23369	-99.	80.12826	0.03564		0
3XMMJ0005	48.8+200627	1837	7186	0600540601	9	0009	1.45339	20.10758	580.6626	139.84521	437.29176	0.03564	\checkmark	0
3XMMJ0005	48.8+200627	1838	7186	0306870101	7	0007	1.45339	20.10758	255.86811	70.98639	181.71661	0.03563	\checkmark	0
3XMMJ0005	48.7+201513	1839	13087	0600540601	104	0068	1.4532	20.25367	79.26334	50.03315	-99.	0.03649	\checkmark	0
3XMMJ0005	48.8+200627	1840	7186	0600540501	9	0009	1.45339	20.10758	422.29079	100.01115	320.50835	0.03564	\checkmark	0
3XMMJ0005	49.5+201308	1845	7101	0600540601	10	000A	1.45629	20.21902	668.22002	179.17344	484.68514	0.03628	$\overline{}$	0
3XMMJ0005	49.5+201308	1846	7101	0306870101	4	0004	1.45629	20.21902	390.1877	103.21101	284.48779	0.03628	✓	0
3XMMJ0005	49.5+201308	1848	7101	0101040101	11	000B	1.45629	20.21902	164.87083	-99.	124.67539	0.03628	$\overline{}$	0
3XMMJ0005	49.5+201308	1849	7101	0600540501	8	8000	1.45629	20.21902	519.88876	108.72877	406.54006	0.03628	$\overline{\mathbf{V}}$	0
3XMMJ0005	50.0-344757	1855	18222	0404910101	15	000F	1.4585	-34.79917	95.76618	-99.	64.51116	0.01318	\checkmark	0
3XMMJ0005	50.4-343742	1861	33310	0404910101	18	0012	1.46033	-34.6285	87.80419	-99.	62.66844	0.01329		0
3XMMJ0005	50.7+201716	1864	7812	0306870101	14	000E	1.46166	20.28797	236.87845	112.47384	121.87379	0.03665	\checkmark	9
3XMMJ0005	50.7+201716	1865	7812	0101040101	17	0011	1.46166	20.28797	110.29757	-99.	68.56283	0.03665	$\overline{\mathbf{v}}$	
3XMMJ0005	50.7+201716	1866	7812	0600540601	33	0021	1.46166	20.28797	282.75284	142.658	138.45195	0.03665		J
	50.7+201716	1867	7812	0600540501	31	001F	1.46166	20.28797	123.73808	51.90408	70.41663	0.03665	$\overline{\mathbf{A}}$	0
X-ray	Univers	se 20	14							Dub	iin. 16th	-19th J	ure	2 U 74




Less than 1% of detections missing one fit due to errors.

Acceptable fits even for large number of counts.

Consistent within errors for ~ 70% of the detections. Significant differences: power-law with a steep photon index, or thermal model.

Access

 Full database (FITS table) from 3XMM-DR4 released on March 2014 (and documentation).

http://xraygroup.astro.noa.gr/Webpage-prodec/index.html

- LEDAS (Leicester Database and Archive Service): query capabilities. 3XMMspectral.
- XCAT-DB: query and spectral-fitting visualisation tool.

http://xraygroup.astro.noa.gr/Webpageprodec/index.html

XMM-Newton Spectral fit database

XMM-Newton spectral-fit database

Home

The project

Catalogue access

Catalogue description

XMM-SDSS sample

Seminars

Publications

Related links

About us / contacts

Summary

This project aims to the construction of a spectral-fit database for all the pipeline-extracted spectra within the XMM-Newton serendipitous source catalogue. The main goal is to provide the astronomical community with a tool to query the catalogue according to spectral properties and thus, to construct large and representative samples of X-ray sources fulfilling the spectral criteria.

This project is funded by the ESA-PRODEX program and consists of the collaboration between the X-ray Astronomy and Cosmology group group at the Istitute for Astronomy, Astrophysics, Space Applications, and Remote Sensing (IAASARS) at the National Observatory of Athens (NOA), and the X-ray and Observational Astronomy Group (XROA) at the Department of Physics and Astronomy at the University of Leicester.

March 2014 The first full version of the XMM-Newton spectral-fit database can be retrieved from this page.

March 2014 The spectral-fitting results corresponding to a XMM/SDSS cross-correlation can be retrieved from this page.

http://xraygroup.astro.noa.gr/Webpageprodec/index.html

XMM-Newton Spectral fit database

XMM-Newton spectral-fit database

Home

The project

Catalogue access

Catalogue description

XMM-SDSS sample

Seminars

Publications

Related links

About us / contacts

Summary

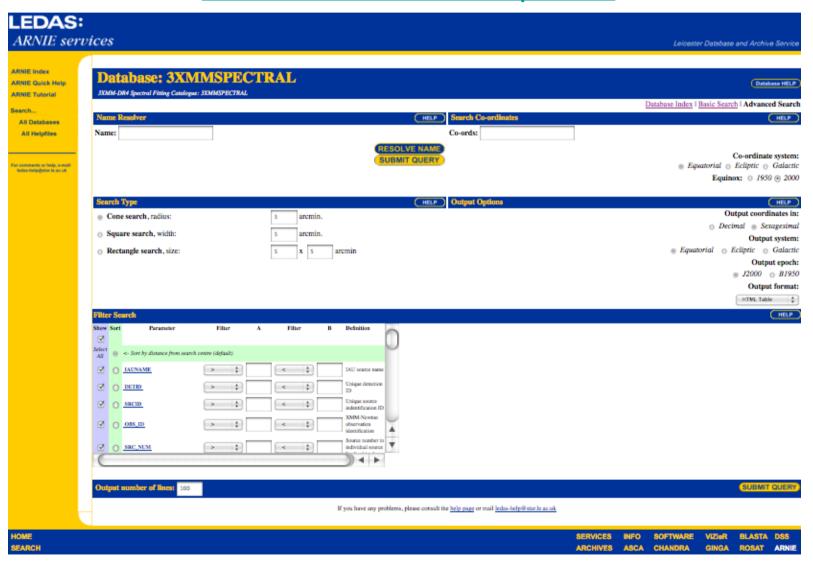
This project aims to the construction of a spectral-fit database for all the pipeline-extracted spectra within the XMM-Newton serendipitous source catalogue. The main goal is to provide the astronomical community with a tool to query the catalogue according to spectral properties and thus, to construct large and representative samples of X-ray sources fulfilling the spectral criteria.

This project is funded by the ESA-PRODEX program and consists of the collaboration between the X-ray Astronomy and Cosmology group group at the Istitute for Astronomy, Astrophysics, Space Applications, and Remote Sensing (IAASARS) at the National Observatory of Athens (NOA), and the X-ray and Observational Astronomy Group (XROA) at the Department of Physics and Astronomy at the University of Leicester.

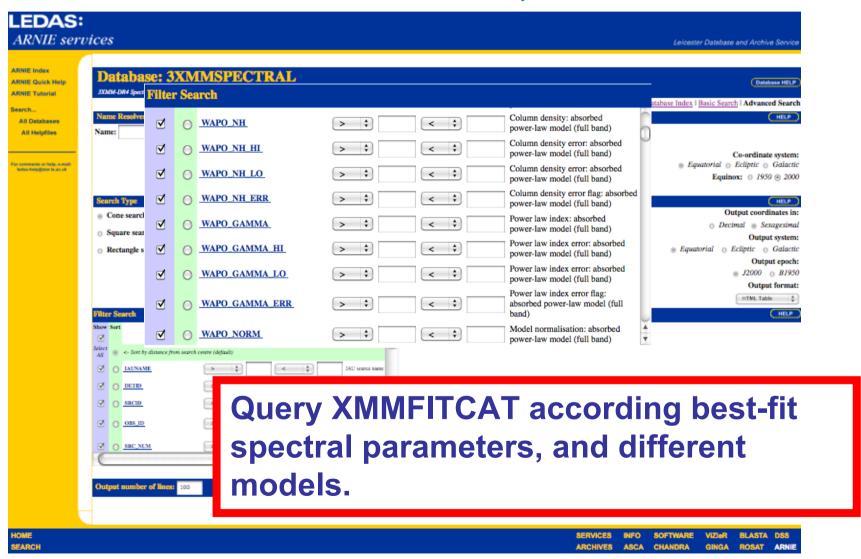
March 2014 The first full version of the XMM-Newton spectral-fit database can be retrieved from this

Retrieve XMMFITCAT as a FITS table

Documentation


Access

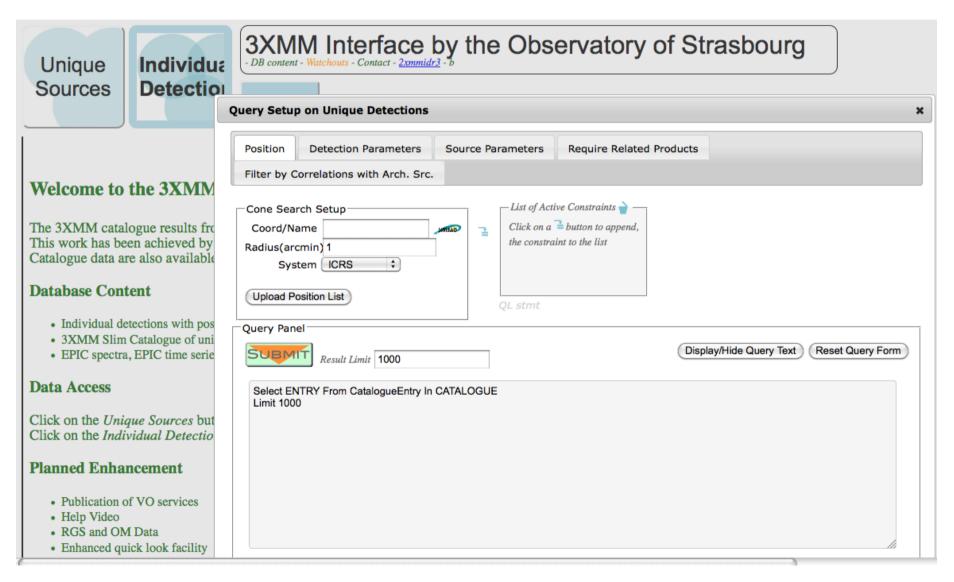
 Full database (FITS table) from 3XMM-DR4 released on March 2014 (and documentation).


http://xraygroup.astro.noa.gr/Webpage-prodec/index.html

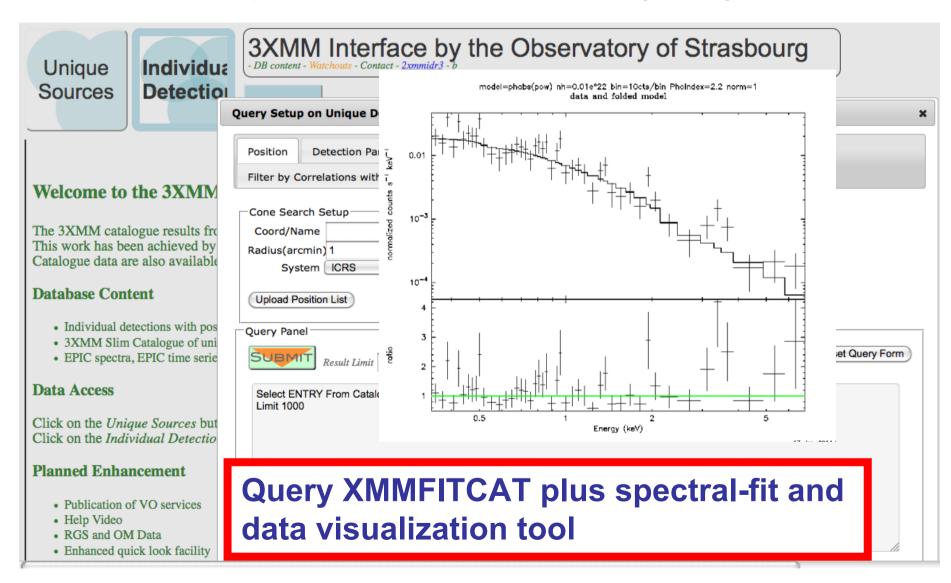
- LEDAS (Leicester Database and Archive Service): query capabilities. 3XMMspectral.
- XCAT-DB: query and spectral-fitting visualisation tool.

http://www.ledas.ac.uk/arnie5/arnie5.php?action=advanced&catname=3xmmspectral

http://www.ledas.ac.uk/arnie5/arnie5.php?action=advanced&catname=3xmmspectral


Access

 Full database (FITS table) from 3XMM-DR4 released on March 2014 (and documentation).


http://xraygroup.astro.noa.gr/Webpage-prodec/index.html

- LEDAS (Leicester Database and Archive Service): query capabilities. 3XMMspectral.
- XCAT-DB: query and spectral-fitting visualisation tool (soon).

http://xcatdb.unistra.fr/3xmm/ (soon)

http://xcatdb.unistra.fr/3xmm/ (soon)

XMM/SDSS

http://xraygroup.astro.noa.gr/Webpageprodec/index.html

- Spectral-fitting results from XMM-Newton SDSS-DR7 cross-correlation (Georgakakis & Nandra 2011)
- Detected in the hard band (2-8 keV): ~14,000.
 - Sources with redshifts available ~ 8000 (spectral fits modified to include redshift effects)
 - Sub-sample with spectroscopic redshifts used in selection of highly absorbed AGN (Corral et al., submitted; Fe Kα emission line fitting included; I.
 Georgantopoulos talk yesterday)

Summary

- Construction of XMMFITCAT from 3XMM-DR4 completed, catalogue released to the public.
- Plus additional results from a XMM/SDSS cross-correlation also released.
- Working on catalogue paper.
- Future: spectral-fitting results will be included in future versions of the XMM-Newton Serendipitous Source catalogue. Athena, eROSITA?