

Revealing the coronal properties of Seyfert galaxies with NuSTAR

NuSTAR

Ī

Andrea Marinucci (Roma Tre)

on behalf of the NuSTAR AGN Physics WG

> Dublin The X-ray Universe 2014 June 19, 2014

 Brief introduction on high-energy cutoff measurements

•Nearby AGN seen by NuSTAR

Results

Conclusions and future perspectives

Andrea Marinucci (Roma Tre)

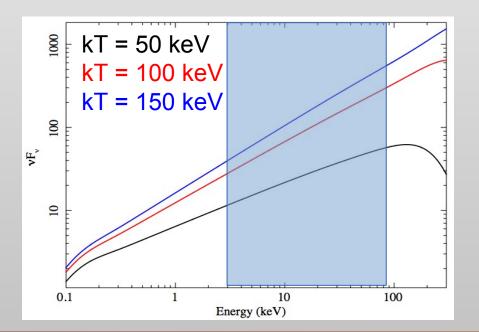
Brief introduction on high-energy cutoff measurements

•Nearby AGN seen by NuSTAR

• Results

Conclusions and future perspectives

Introduction

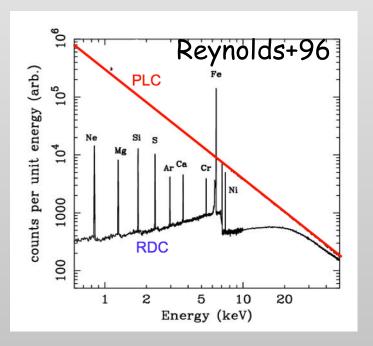

To observer

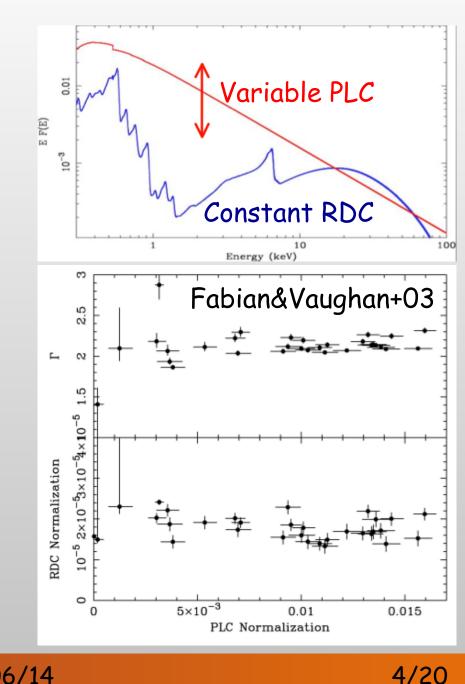
"Reflection

spectrum

One of the main open problem for AGN is the nature of the primary X-ray emission.

It is due to Comptonization of soft photons, but the geometry, optical depth and temperature of the emitting corona are largely unknown.

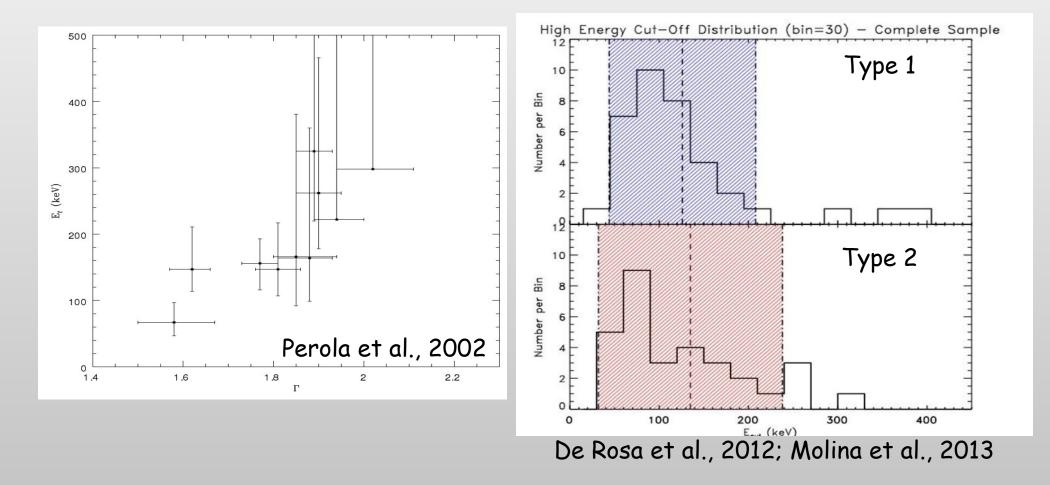

Most popular models imply E_{cut} =2-3x kT_e, so measuring E_{cut} helps constraining Comptonization models.


Direct Power-law

Andrea Marinucci (Roma Tre)

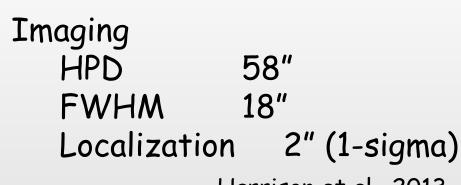
Introduction

Since the primary X-ray radiation illuminates the disc and is partly reflected towards the observer's line of sight it is fundamental to properly take it into account.

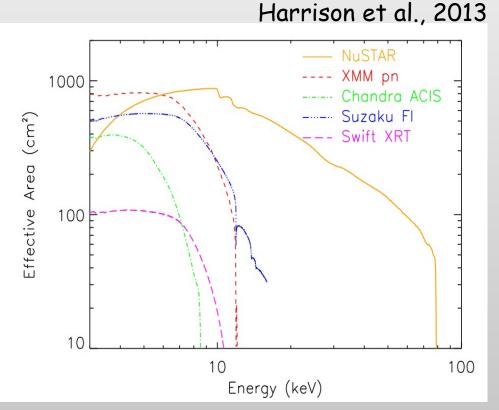


Andrea Marinucci (Roma Tre)

Introduction

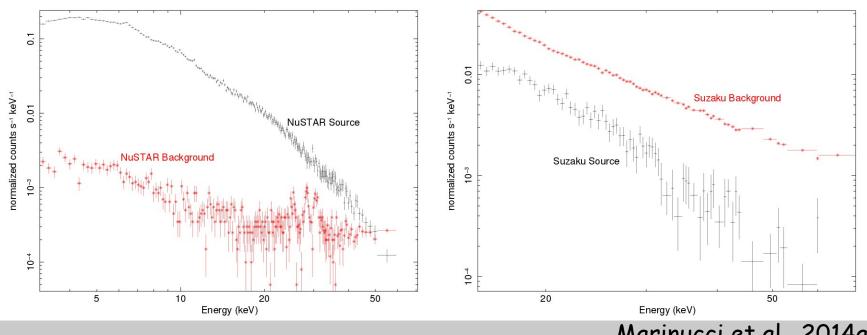

So far, we have only a handful of results based on non focusing, and therefore strongly background-dominated, satellites (BeppoSAX-PDS, Suzaku HXD-PIN, INTEGRAL, Swift-BAT)

- Brief introduction on high-energy cutoff measurements
 - Nearby AGN seen by NuSTAR
 - Results
 - Conclusions and future perspectives


The NuSTAR satellite

1 Ms Sensitivity 3.2 x 10⁻¹⁵ erg/cm²/s (6 - 10 keV) 1.4 x 10⁻¹⁴ erg/cm²/s (10 - 30 keV)

Spectral response energy range: 3-79 keV ∆E@6 keV 0.4 keV FWHM ∆E@60 keV 1.0 keV FWHM


Target of Opportunity response <24 hr typical 6-8 hours 80% sky accessibility

The NuSTAR satellite

The combination of NuSTAR high effective area and low background yelds ~100x better S/N versus Suzaku HXD-PIN

MCG-6-30-15: 125 ks net exposure time and same 15-70 keV flux $(6.5 \times 10^{-11} \text{ erg/cm}^2/\text{s})$

AGN observed by NuSTAR

AGN Physics WG:

			<u> </u>	
Target	R.A.	Dec.	T_observd	ObsDate
3C273	187.277917	2.052500	371.5 ks	2012 Jul
MCG-5-23-16	146.917319	-30.948734	243.5 ks	2012 Jul+
IC4329A	207.330000	-30.309444	185.2 ks	2012 Aug
SwiftJ2127d4p5654	321.937083	56.944444	212.4 ks	2012 Nov
NGC4151	182.635833	39.405833	151.2 ks	2012 Nov
MCG-6-30-15	203.974167	-34.295556	209.3 ks	2013 Jan+
Cyg_A	299.868153	40.733916	67.1 ks	2013 Feb+
Ark120	79.047500	-0.149722	93.2 ks	2013 Feb
3C120	68.296250	5.354444	181.4 ks	2013 Feb
3C390.3	280.537458	79.771424	104.7 ks	2013 May
Mkn335	1.581339	20.202914	146.9 ks	2013 Jun
NGC4051	180.790060	44.531334	185.4 ks	2013 Jun
NGC5548	214.497958	25.136806	219.0 ks	2013 Jul+
Cen A	201.365063	-43.019112	58.6 ks	2013 Aug
PDS 456	262.082483	-14.265519	376.0 ks	2013 Aug
NGC3783	174.757339	0.000000	ks	

Brenneman et al. 2014a
Brenneman et al. 2014b
Marinucci et al. 2014b

→ Matt et al. 2014

- Brief introduction on high-energy cutoff measurements
 - Nearby AGN seen by NuSTAR

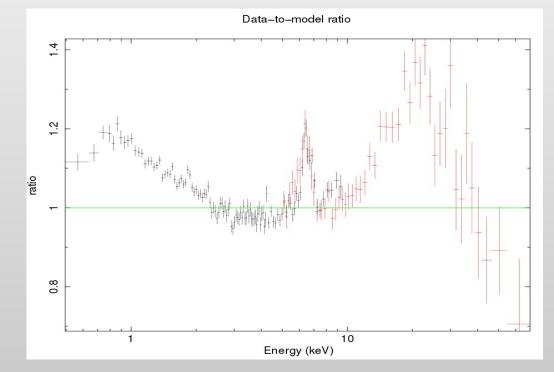
Results

Conclusions and future perspectives

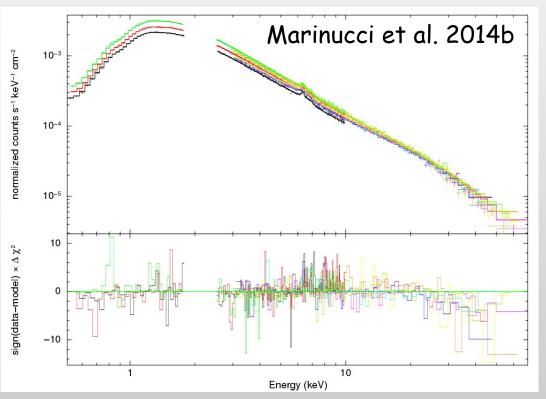
NuSTAR cutoff measurements

So far, NuSTAR has provided a number of cutoff measurements in AGN with different spectral characteristics:

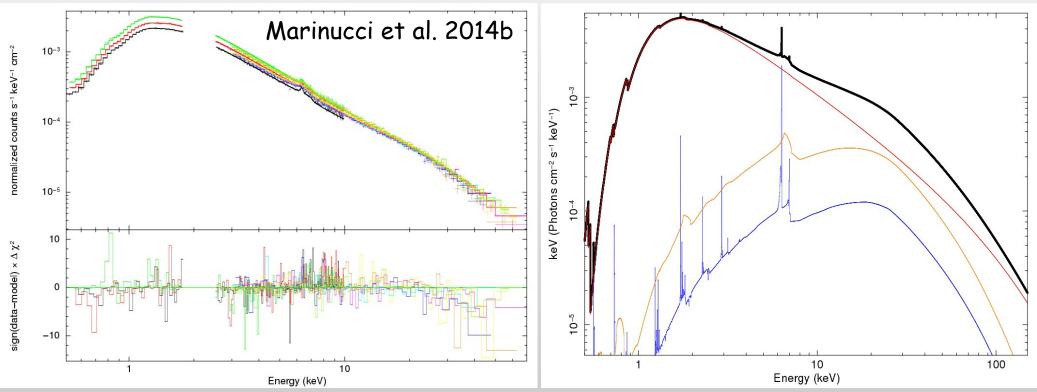
Relativistic reflection


SWIFT J2127.4+5654 (E_c =108±10 keV), $L_{2-10 \text{ keV}}$ =1.5×10⁴³ erg/s

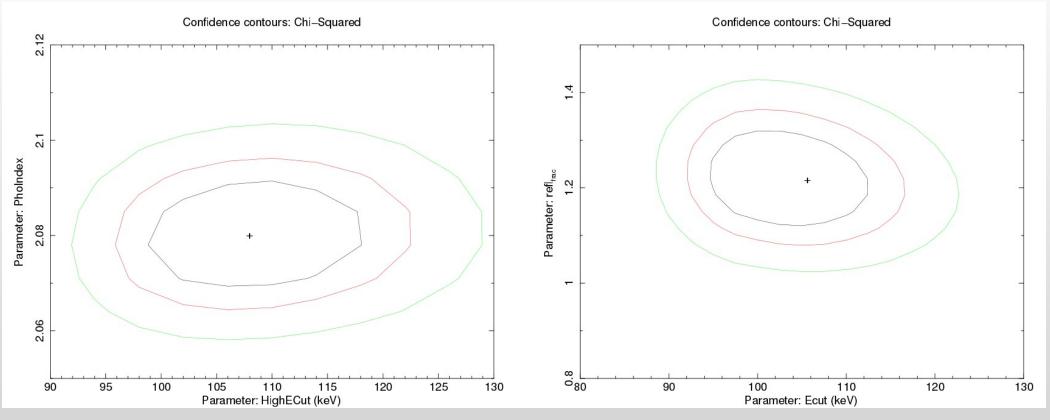
Cold, distant reflection IC 4329A (E_c=186±14 keV), L_{2-10 keV}=6.3×10⁴³ erg/s Ark 120 (E_c>190 keV), L_{2-10 keV}=5.6×10⁴³ erg/s


Andrea Marinucci (Roma Tre)

NLS1 with a relativistically broadened Fe Kα emission line (a=0.6±0.2), a steep continuum (Γ=2-2.4), E_c=30-90 keV, L_{bol}/L_{Edd}~0.18 (Miniutti+09, Malizia+08, Panessa+11, Sanfrutos+13)


It was observed simultaneously with XMM-Newton for ~300 ks and both a strong Compton Hump and a broad Fe Kα line are present

When a model composed of a primary continuum, relativistic and distant reflection components is applied to the data the only residuals are above ~25 keV



When a model composed of a primary continuum, relativistic and distant reflection components is applied to the data the only residuals are above ~25 keV

The inclusion of relxill model (Garcia & Dauser +14) allows us to measure a cutoff energy $E_c=108\pm10$ keV and to infer the contribution of the disk to the Compton hump.

Andrea Marinucci (Roma Tre)

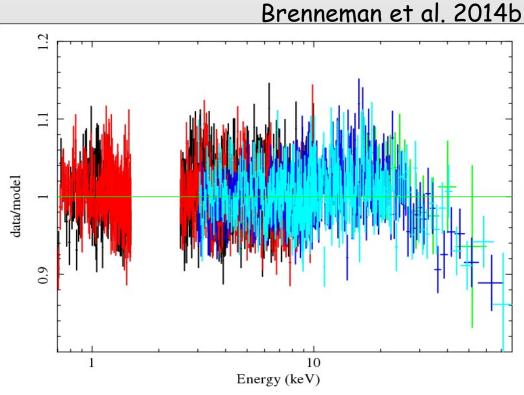
Using compTT (Titarchuk+94) with two different geometries we get:

SLAB
$$kT_e = 68^{+37}_{-32} \text{ keV}$$

 $\tau = 0.35^{+0.35}_{-0.19}$

SPHERE $kT_e = 53^{+28}_{-26} \text{ keV}$ $\tau = 1.35^{+1.03}_{-0.67}$

Andrea Marinucci (Roma Tre)


IC 4329A

-Bright Sy1 galaxy, $F_{2-10 \text{ keV}} \sim 0.1$ -1.8 x10⁻¹⁰ erg/cm²/s

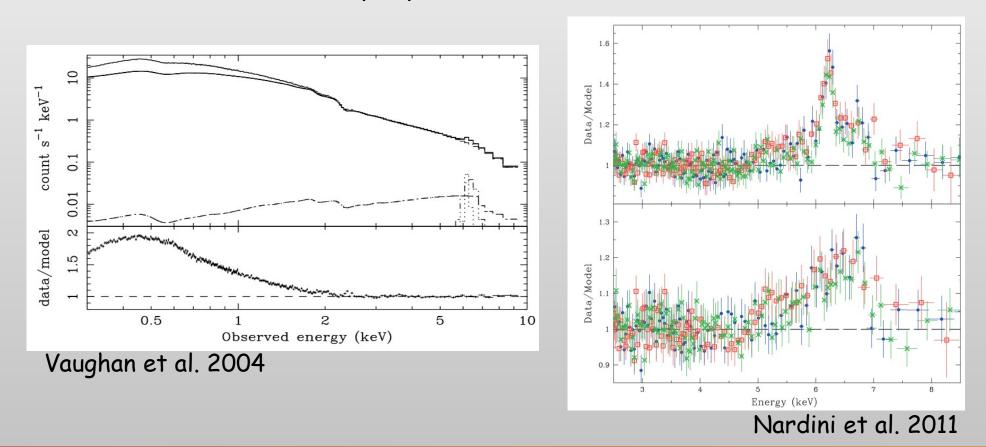
- E_c=100⁺²⁰⁰_40 keV (INTEGRAL+XMM, Molina+13)

- Observed simultaneously by NuSTAR and Suzaku for ~120 ks in 2012

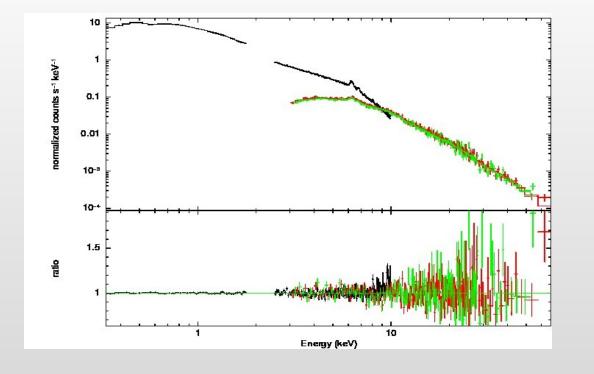
When a model composed of a primary continuum+reflection is applied to the data some residuals at high energies are found.

IC 4329A

No evidence for relativistic lines.

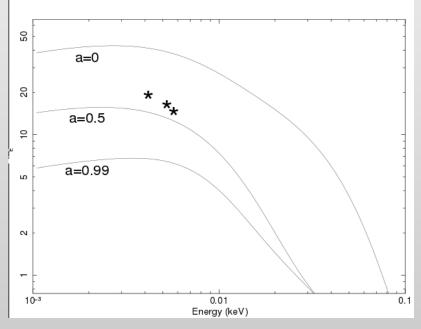

Iron line and Compton reflection originate from distant material.

Ark 120


- "Bare" Seyfert 1 galaxy, $F_{2-10 \text{ keV}} \sim 2-4 \times 10^{-11} \text{ erg/cm}^2/\text{s}$

- Prominent soft excess (XMM, Vaughan et al.+04)
- Relativistic Iron line (Suzaku, Nardini et al.+11)

- Observed simultaneously by NuSTAR and XMM for 90 ks in 2013


Ark 120

When 0.5-80 keV data are considered the coronal parameters can be derived, testing the optxagnf model (Done et al., 2012). The OM fluxes support an intermediate value for the black hole spin.

Andrea M	Aarinucci ((Roma Tre)

a	0	0.50	0.99
L/L_{Edd}	$0.16\substack{+0.16\\-0.08}$	$0.05\substack{+0.01\\-0.01}$	$0.04^{+0.03}_{-0.01}$
$R_c \; (R_G)$	$11.5^{+0.1}_{-3.4}$	$31.3^{+39.2}_{-16.6}$	$24.9^{+16.0}_{-15.2}$
$kT \; (\mathrm{keV})$	$0.33_{-0.02}^{+0.02}$	$0.32\substack{+0.01\\-0.01}$	$0.32^{+0.02}_{-0.01}$
au	$12.9^{+1.1}_{-0.9}$	$13.6^{+0.6}_{-0.2}$	$13.6^{+0.4}_{-0.7}$
Г	$1.73^{+0.02}_{-0.02}$	$1.73^{+0.02}_{-0.02}$	$1.73^{+0.02}_{-0.02}$
$E_c \; (\mathrm{keV})$	>190	>190	>190

- Brief introduction on high-energy cutoff measurements
 - Nearby AGN seen by NuSTAR
 - Results
 - Conclusions and future perspectives

- High energy cut-off have been measured in a number of AGN with NuSTAR (more are yet to come!)
 - The hard X-ray band (3-80 keV) is fundamental for testing and discriminating between different Comptonization models
- Further observations will help us in understanding the nature of the primary continuum, such as the relation between the accretion rate and the cutoff energy and the link between the disc reflection and the extension of the hot corona.

