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GRB afterglows: models and observations
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The fireball model

= Gamma-ray bursts (GRBs) are the most luminous

explosions in the universe and have central engines @ T<1Ms
that drive the outbursts in highly relativistic jets (e.g. [ ; ms §$ <2 MS
Mészaros 2006). 20 ?S_Ms <5Ms

= The afterglow emission consists of synchrotron
radiation produced by the interaction of a forward
shock and the surrounding medium (Fig. 1).
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= Two types of environments based on the density
profile: ISM (homogeneous) and wind
(inhomogeneous).

Fig. 3: Percentage of GRB afterglows detected
by Swift/XRT up to 1 Ms, 2 Ms and 5 Ms after
L . . L Prompt 5 the burst trigger. The sample includes a total
= Emission is characterised by six parameters: kinetic emission of 646 GRBs since 2004.
energy (Ew), initial Lorentz factor (I), electron spectral
index (p), equipartition fractions of electrons (ge) and
magnetic fields (eg) and the density of the circumburst
environment (n, or A for the wind model).

Emission phases: Transition times: DE(<SD
0: Prompt o t12=10%10%s 50‘<t $
o ) T, <t<100ks
\ 1: High-latitude O t24=103-10%s 100 < t <200 ks
2: Plateau O ts5=10%10°s z
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4: Forward shock

= The observed flux can be described as: Fxv#t?, -
5:Jetor End of X-ray ~ Temporal indices:

where B is the energy spectral index. E afterglow o =3
= =
= The X-ray light curve (Fig. 2) is characterised by a P o a2~ 0.5
series of temporal segments with different decay ot o a4~ 1.0-1.5
slopes (e.g. Nousek et al. 2006). 0 a5~ 2.1-2.5

= At 106 s after the GRB trigger the observed flux is Fig. 4: Histogram indicating the typical

Fobs < 1073 erg cm? ™! limiting the number of GRBs H H H location of the jet break time from the burst
with detections at such late times (Fig. 3). This can : : i S trigger for GRBs with prominent jet breaks

also explain the lack of late jet breaks in the Swift ) . . i i i
sampIerFig. a). J f Time since trigger Fig. 2 shown in Racusin et al. (2009).
Particle acceleration in GRB afterglows
Maximum observed energy Steepening of the afterglow light curve
= |n the forward shock model, the particle acceleration is produced through diffusive shock = Maximal observed energy of the electrons crossing the X-ray band,
acceleration in weakly magnetised relativistic collisionless shocks (e.g. Piran 2005). assuming an electron spectral index p=2.4 and a power-law with

= The maximum observed energy is limited by Confinement (Conf), Synchrotron or Inverse exponential cutoff distribution (Fig. 6).
Compton (IC) as shown in Fig. 5. = Breaks are smooth with index, |s|~0.66.

= These limits depend on:
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Results

GRB 080411- modelled with a type 2 break
O Vobs > Vc (post-break) in ISM
0 [(tbreak)~6
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= No spectral variations. sk * “L } : 1 |acceleration decreases for shocks moving
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Fig. 8 Time since trigger (s)




