Revealing Massive Black Holes in Dwarf Galaxies with X-rays

Amy Reines
Einstein Fellow at NRAO Hubble Fellow at Univ. of Michigan
The importance of supermassive black holes (SMBHs)

- SMBHs are fundamental components of today’s massive galaxies

\[M_{BH} \sim 1.4 \times 10^8 \, M_{\text{sun}} \]

Bender et al. (2005)
The importance of supermassive black holes (SMBHs)

- SMBHs are fundamental components of today’s massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies

\[M_{BH} \sim 1.4 \times 10^8 \, M_{\text{sun}} \]

Bender et al. (2005)

NASA/CXC/CfA/R.Kraft et al.
The importance of supermassive black holes (SMBHs)

- SMBHs are fundamental components of today’s massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies
- SMBHs are thought to play an important role in the evolution of galaxies

\[M_{BH} \sim 1.4 \times 10^8 \, M_{\text{sun}} \]
Bender et al. (2005)

\[\text{Bulge velocity dispersion (km s}^{-1}\text{)} \]
NASA/CXC/CfA/R.Kraft et al.

\[\text{Black hole mass (M}_{\text{sun}} \text{)} \]
McConnell & Ma (2013)
The importance of supermassive black holes (SMBHs)

- SMBHs are fundamental components of today’s massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies
- SMBHs are thought to play an important role in the evolution of galaxies

\[M_{BH} \sim 1.4 \times 10^8 \, M_{\text{sun}} \]
Bender et al. (2005)

\[\text{Bulge velocity dispersion (km s}^{-1}\)\]
McConnell & Ma (2013)

\[\text{Black hole mass (M}_{\text{sun}}\)\]

The origin of these SMBHs is far from understood!
Motivation: The origin of supermassive black holes

Directly observing the first BH seeds is currently not feasible

- High-z galaxies from the sample of Bouwens et al. NOT detected in 4 Ms *Chandra* Deep Field South (individually or stacked) (Willott 2011; Cowie et al. 2012; Treister 2013)

- star-forming, blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)

- intrinsic sizes < 1 kpc (Oesch et al. 2010)

- masses ~ 10^9-$10^{10} \, M_{\odot}$ (Labbe et al. 2010)

Image: HUDF09 WFC3/IR Image with z~7 and z~8 Galaxies (Credit: NASA, ESA, G. Illingworth, R. Bouwens (University of California, Santa Cruz), and the HUDF09 Team)
Motivation: The origin of supermassive black holes

Directly observing the first BH seeds is currently not feasible

• star-forming, blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)
• intrinsic sizes < 1 kpc (Oesch et al. 2010)
• masses ~ 10^9-$10^{10} \, M_{\odot}$ (Labbe et al. 2010)

Present-day dwarf galaxies offer another avenue to observationally constrain the origin of supermassive BH seeds

(e.g., masses, host galaxies, and in principle, even the formation mechanism)
Motivation: The origin of supermassive black holes

Observations of high-redshift quasars:

- $M_{\text{BH}}>10^9 \, M_{\odot}$ less than a Gyr after the Big Bang
 (e.g. Fan et al. 2001; Mortlock et al. 2011)

Seeds almost certainly started out with masses considerably in excess of normal stellar-mass BHs
Motivation: The origin of supermassive black holes

Possible seed formation mechanisms
Motivation: The origin of supermassive black holes

Possible seed formation mechanisms

Motivation:
The origin of supermassive black holes remnants from Pop III stars

Gas cools very slowly forming a stable disc

First stars: maybe one star per galaxy, up to several hundred times larger than the sun

If the star is more massive than ~300 solar masses, it collapses into a black hole, ~200 times the mass of Sun

Volonteri 2012, Science
Motivation: The origin of supermassive black holes

Possible seed formation mechanisms

- Remnants from Pop III stars:
 - Gas cools very slowly forming a stable disc
 - Globally unstable gas infalls rapidly toward the galaxy center and a supermassive star forms

- Direct collapse:
 - First stars: maybe one star per galaxy, up to several hundred times larger than the sun
 - The stellar core collapses into a small black hole, embedded in what is left of the star

- If the star is more massive than ~300 solar masses, it collapses into a black hole, ~200 times the mass of Sun
 - The black hole swallows the envelope growing up to ~one million solar masses

Volonteri 2012, Science
Motivation: The origin of supermassive black holes

Possible seed formation mechanisms

- **Dark matter**
 - Gas
 - Collisions in dense star clusters
 - Locally unstable gas flows toward the galaxy center
 - Globally unstable gas infalls rapidly toward the galaxy center and a supermassive star forms
 - Direct collapse
 - Gas cools very slowly forming a stable disc
 - Globally unstable gas infalls rapidly toward the galaxy center and a supermassive star forms
 - Remnants from Pop III stars
 - First stars: maybe one star per galaxy, up to several hundred times larger than the sun
 - Gas fragments into stars, and a dense star cluster forms
 - The stellar core collapses into a small black hole, embedded in what is left of the star
 - The black hole swallows the envelope growing up to ~one million solar masses
 - If the star is more massive than ~300 solar masses, it collapses into a black hole, ~200 times the mass of the Sun
 - Stars merge into a very massive star that collapses into a black hole ~1000 times more massive than the Sun

Volonteri 2012, *Science*
Motivation: The origin of supermassive black holes

Models of black hole growth in a cosmological context

Greene 2012, *Nature Communications*; also see review in Volonteri 2010
Motivation: The origin of supermassive black holes

Models of black hole growth in a cosmological context

Greene 2012, *Nature Communications*; also see review in Volonteri 2010
Motivation: The origin of supermassive black holes

Models of black hole growth in a cosmological context

- Direct collapse
- Remnants of Pop III stars

Greene 2012, *Nature Communications*; also see review in Volonteri 2010
Observationally, very few dwarf galaxies known to host massive black holes
Observationally, very few dwarf galaxies known to host massive black holes

Until now...
Dwarf galaxies with optical signatures of active massive BHs

Largest sample of dwarfs hosting massive BHs to date

35 AGN
101 Composites

25 broad-line AGN candidates
(with BH mass estimates)

Reines, Greene & Geha 2013
Dwarf galaxies with optical signatures of active massive BHs

Largest sample of dwarfs hosting massive BHs to date

Least-massive black holes known
(median \(M_{BH} \sim 2 \times 10^5 \, M_{\odot} \))

Reines, Greene & Geha 2013
Dwarf galaxies with optical signatures of active massive BHs

Examples of host galaxies

Reines, Greene & Geha 2013
Dwarf galaxies with optical signatures of active massive BHs

~0.5% of dwarfs have **optical signatures** of accreting massive BHs

... but only sensitive to the most actively accreting BHs in galaxies with low SF

Reines, Greene & Geha 2013
Dwarf galaxies with optical signatures of active massive BHs

\[10^7 < M_{\text{stellar}} < 10^{9.5} M_\odot \]

\(\sim 0.5\% \) of dwarfs have \textit{optical signatures} of accreting massive BHs

... but only sensitive to the most actively accreting BHs in galaxies with low SF

Reines, Greene & Geha 2013

\textbf{Need other diagnostics!}
High-resolution X-ray and radio observations

• More sensitive to weakly accreting BHs
• Can pick out AGN in galaxies with lots of star formation (common in dwarfs)
A massive BH in the dwarf starburst galaxy Henize 2-10

Reines et al. 2011, *Nature*

First example of a dwarf starburst galaxy with a massive BH ($\sim 10^6 \, M_{\odot}$)
A massive BH in the dwarf starburst galaxy Henize 2-10

VLBI follow-up with the Long Baseline Array (LBA)

nuclear radio source: \(\leq 3 \times 1 \) pc

HST imaging of central \(\sim 250 \) pc

Reines & Deller 2012
Motivation to look for additional examples of massive BHs in star-forming dwarf galaxies with Chandra and the VLA.
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

SDSS image (RGB=zrg)

$M_\star \sim 1.1 \times 10^9 M_{\odot}$

Mrk 709 N

$M_\star \sim 2.5 \times 10^9 M_{\odot}$

Mrk 709 S

metallicity $\sim 10\%$ solar

Reines et al. 2014

Masegosa et al. (1994)
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

Chandra ~ 21 ks

VLA, A-configuration, C-band ~ 1 hr on-source
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

SDSS z-band image of Mrk 709 S with position of hard X-ray source and radio contours

Reines et al. 2014
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

\[L_{(2-7 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1} \]

(90% confidence interval)

\[L_{(2-10 \text{ keV})} \sim 9 \times 10^{39} \text{ erg s}^{-1} \]

(3 sigma upper limit)

\[L_{\text{gal}}^{\text{HX}} = \alpha M_* + \beta \text{SFR} \]

Lehmer et al. (2010)
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

Chandra hard (2-7 keV) X-ray image

Expected contribution from X-ray binaries within 3” spectroscopic fiber:

\[L_{\text{gal}}^{\text{HX}} = \alpha M_* + \beta SFR \]

Lehmer et al. (2010)

\[L_{(2-10 \text{ keV})} \sim 9 \times 10^{39} \text{ erg s}^{-1} \]

(3 sigma upper limit)

Measured value (within ~1” *Chandra* PSF) is a factor of ~5x higher, suggesting the presence of an AGN

\[L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1} \]

(90% confidence interval)
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

Chandra hard (2-7 keV) X-ray image

Minimum Black Hole Mass:

\[\frac{M_{\text{BH}}}{M_\odot} \geq \frac{\kappa L_{2-10\text{keV}}}{(1.3 \times 10^{38} \text{ erg s}^{-1})} \]

Assuming BH radiating at Eddington limit and X-ray bolometric correction = 1,

\[M_{\text{BH}} > 385 \, M_\odot \]

(or >160 \(M_\odot \) at 95% confidence)

\[L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1} \]

(90% confidence interval)
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

Chandra hard (2-7 keV) X-ray image

Minimum Black Hole Mass:

\[
\frac{M_{\text{BH}}}{M_\odot} \geq \left(\kappa L_{2-10\text{keV}} \right) / \left(1.3 \times 10^{38} \text{ erg s}^{-1} \right)
\]

Assuming BH radiating at Eddington limit and X-ray bolometric correction = 1,

\[
M_{\text{BH}} > 385 \, M_\odot
\]

(or >160 \(M_\odot \) at 95% confidence)

BH mass may be orders of magnitude larger

\[
L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}
\]

(90% confidence interval)
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

Central radio source (#2)

$S_{7.4\text{GHz}} \sim 40 \pm 10 \text{ uJy}$
$S_{5.0\text{GHz}} \sim 60 \pm 20 \text{ uJy}$

$L_{\text{radio}} = (1.6 + 0.6) \times 10^{37} \text{ erg s}^{-1}$
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

Merloni et al. 2003

\[\log L_R (5 \text{ GHz}) \, \text{erg s}^{-1} = 0.60 \log L_X (2-10 \text{ keV}) \, \text{erg s}^{-1} + 0.78 \log M \]

“fundamental plane of black hole activity”

\[\log L_R = 0.60 \log L_X + 0.78 \log M + 7.33 \]

order-of-magnitude estimate of BH mass: \(M_{BH} \sim 6 \times 10^6 \, \text{M}_\odot \)
A Candidate Massive Black Hole in the Low-Metallicity Dwarf Galaxy Pair Mrk 709

X-ray luminosity alone suggests a massive BH or super-Eddington accretion onto a stellar-mass BH

If the radio point source emission is also from the accreting BH, a stellar-mass BH is firmly ruled out

Reines et al. 2014
X-ray + radio observations suggest the presence of a massive BH at the center of Mrk 709 S that is hidden at optical wavelengths.

Among the most metal-poor galaxies with evidence for an AGN.

Underscores the power of utilizing Chandra and the VLA to search for massive BHs in low-mass star-forming galaxies that can be missed by optical diagnostics.

Larger-scale surveys are needed to determine how common these objects are, and to ultimately help constrain the BH occupation fraction in dwarfs and the origin of supermassive BH seeds.
Summary

• Dwarf galaxies can help reveal the origin of supermassive BHs

• Found largest sample of massive BHs in dwarf galaxies to date using optical diagnostics (Reines, Greene & Geha 2013)

• Also using X-ray + radio diagnostics to search for BHs in dwarf galaxies: Henize 2-10 (Reines et al. 2011, Reines & Deller 2012), Mrk 709 (Reines et al. 2014)

• Host galaxies have stellar masses comparable to the Magellanic Clouds, a mass regime where very few massive BHs have previously been found

• Future work:
 Follow-up on existing samples, new searches to probe a different parameter space, constrain seed masses, host galaxies, and models for BH seed formation