Revealing Massive Black Holes in Dwarf Galaxies with X-rays

Amy Reines

Einstein Fellow at NRAO --- Hubble Fellow at Univ. of Michigan

• SMBHs are fundamental components of today's massive galaxies

 $M_{BH} \sim 1.4 \times 10^8 M_{sun}$ Bender et al. (2005)

- SMBHs are fundamental components of today's massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies

 $M_{BH} \sim 1.4 \times 10^8 M_{sun}$ Bender et al. (2005)

NASA/CXC/CfA/R.Kraft et al.

- SMBHs are fundamental components of today's massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies
- SMBHs are thought to play an important role in the evolution of galaxies

 $M_{BH} \sim 1.4 \times 10^8 M_{sun}$ Bender et al. (2005)

NASA/CXC/CfA/R.Kraft et al.

McConnell & Ma (2013)

- SMBHs are fundamental components of today's massive galaxies
- SMBHs power AGN, which are a source of feedback in galaxies
- SMBHs are thought to play an important role in the evolution of galaxies

 $M_{BH} \sim 1.4 \times 10^8 M_{sun}$ Bender et al. (2005)

NASA/CXC/CfA/R.Kraft et al.

McConnell & Ma (2013)

The origin of these SMBHs is far from understood!

Directly observing the first BH seeds is currently not feasible

• High-z galaxies from the sample of Bouwens et al. NOT detected in 4 Ms Chandra Deep Field South (individully or stacked) (Willott 2011; Cowie et al. 2012; Treister 2013)

- star-forming, blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)
- intrinsic sizes < | kpc (Oesch et al. 2010)
- masses $\sim 10^9$ - 10^{10} M_{sun} (Labbe et al. 2010)

Directly observing the first BH seeds is currently not feasible

• High-z galaxies from the sample of Bouwens et al. NOT detected in 4 Ms Chandra Deep Field South (individully or stacked) (Willott 2011; Cowie et al. 2012; Treister 2013)

- star-forming, blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)
- intrinsic sizes < | kpc (Oesch et al. 2010)
- masses $\sim 10^9 10^{10} M_{sun}$ (Labbe et al. 2010)

Present-day dwarf galaxies offer another avenue to observationally constrain the origin of supermassive BH seeds

(e.g., masses, host galaxies, and in principle, even the formation mechanism)

Observations of high-redshift quasars:

• $M_{BH} > 10^9 M_{sun}$ less than a Gyr after the Big Bang

(e.g. Fan et al. 2001; Mortlock et al. 2011)

Seeds almost certainly started out with masses considerably in excess of normal stellar-mass BHs

Models of black hole growth in a cosmological context

Models of black hole growth in a cosmological context

time

Greene 2012, Nature Communications; also see review in Volonteri 2010

Models of black hole growth in a cosmological context

time

Greene 2012, Nature Communications; also see review in Volonteri 2010

Observationally, very few dwarf galaxies known to host massive black holes

Observationally, very few dwarf galaxies known to host massive black holes

Until now...

Largest sample of dwarfs hosting massive BHs to date

35 AGN 101 Composites 25 broad-line AGN candidates

(with BH mass estimates)

Largest sample of dwarfs hosting massive BHs to date

Least-massive black holes known (median $M_{BH} \sim 2 \times 10^5 M_{sun}$)

Examples of host galaxies

~0.5% of dwarfs have optical signatures of accreting massive BHs

... but only sensitive to the most actively accreting BHs in galaxies with low SF

~0.5% of dwarfs have optical signatures of accreting massive BHs

... but only sensitive to the most actively accreting BHs in galaxies with low SF

Need other diagnostics!

High-resolution X-ray and radio observations

- More sensitive to weakly accreting BHs
- Can pick out AGN in galaxies with lots of star formation (common in dwarfs)

A massive BH in the dwarf starburst galaxy Henize 2-10

Reines et al. 2011, Nature

First example of a dwarf starburst galaxy with a massive BH ($\sim 10^6 M_{sun}$)

A massive BH in the dwarf starburst galaxy Henize 2-10

VLBI follow-up with the Long Baseline Array (LBA)

Reines & Deller 2012

HST imaging of central ~ 250 pc

A massive BH in the dwarf starburst galaxy Henize 2-10

Motivation to look for additional examples of massive BHs in star-forming dwarf galaxies with Chandra and the VLA

metallicity ~ 10% solar

Masegosa et al. (1994)

~ 21 ks

VLA, A-configuration, C-band

~ I hr on-source

SDSS z-band image of Mrk 709 S with position of hard X-ray source and radio contours

Chandra hard (2-7 keV) X-ray image

Expected contribution from X-ray binaries within 3" spectroscopic fiber:

$$L_{\rm HX}^{\rm gal} = \alpha M_{\star} + \beta \rm SFR$$

Lehmer et al. (2010)

 $L_{(2-10 \text{ keV})} \sim 9 \times 10^{39} \text{ erg s}^{-1}$ (3 sigma upper limit)

$$L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$$

Chandra hard (2-7 keV) X-ray image

Expected contribution from X-ray binaries within 3" spectroscopic fiber:

$$L_{\rm HX}^{\rm gal} = \alpha M_{\star} + \beta \rm SFR$$

Lehmer et al. (2010)

 $L_{(2-10 \text{ keV})} \sim 9 \times 10^{39} \text{ erg s}^{-1}$ (3 sigma upper limit)

Measured value (within ~1"
Chandra PSF) is a factor of
~ 5x higher, suggesting the
presence of an AGN

 $L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$

Chandra hard (2-7 keV) X-ray image

Minimum Black Hole Mass:

$$M_{\rm BH}/M_{\odot} \ge (\kappa L_{\rm 2-10keV})/(1.3 \times 10^{38} \, {\rm erg \, s^{-1}})$$

Assuming BH radiating at Eddington limit and X-ray bolometric correction = 1,

$$M_{BH} > 385 M_{sun}$$

(or >160 M_{sun} at 95% confidence)

$$L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$$

Chandra hard (2-7 keV) X-ray image

Minimum Black Hole Mass:

$$M_{\rm BH}/M_{\odot} \ge (\kappa L_{\rm 2-10keV})/(1.3 \times 10^{38} \, {\rm erg \, s^{-1}})$$

Assuming BH radiating at Eddington limit and X-ray bolometric correction = 1,

$$M_{BH} > 385 M_{sun}$$

(or >160 M_{sun} at 95% confidence)

BH mass may be orders of magnitde larger

$$L_{(2-10 \text{ keV})} = (5.0 \pm 2.9) \times 10^{40} \text{ erg s}^{-1}$$

SDSS z-band image of Mrk 709 S with position of hard X-ray source and radio contours

Central radio source (#2)

$$S_{7.4GHz} \sim 40 +/- 10 \text{ uJy}$$

 $S_{5.0GHz} \sim 60 +/- 20 \text{ uJy}$

$$L_{\text{radio}} = (1.6 + 0.6) \times 10^{37} \text{ erg s}^{-1}$$

Merloni et al. 2003

"fundamental plane of black hole activity" $log L_R = 0.60 log L_X + 0.78 log M + 7.33$

order-of-magnitude estimate of BH mass: $M_{BH} \sim 6 \times 10^6 M_{sun}$

X-ray luminosity alone suggests a massive BH or super-Eddington accretion onto a stellar-mass BH

If the radio point source emission is also from the accreting BH, a stellar-mass BH is firmly ruled out

- X-ray + radio observations suggest the presence of a massive BH at the center of Mrk 709 S that is hidden at optical wavelengths
- Among the most metal-poor galaxies with evidence for an AGN
- Underscores the power of utilizing Chandra and the VLA to search for massive BHs in low-mass star-forming galaxies that can be missed by optical diagnostics
- Larger-scale surveys are needed to determine how common these objects are, and to ultimately help constrain the BH occupation fraction in dwarfs and the origin of supermassive BH seeds

Summary

- Dwarf galaxies can help reveal the origin of supermassive BHs
- Found largest sample of massive BHs in dwarf galaxies to date using optical diagnostics (Reines, Greene & Geha 2013)
- Also using X-ray + radio diagnostics to search for BHs in dwarf galaxies: Henize 2-10 (Reines et al. 2011, Reines & Deller 2012), Mrk 709 (Reines et al. 2014)
- Host galaxies have stellar masses comparable to the Magellanic Clouds, a mass regime where very few massive BHs have previously been found
- Future work:

Follow-up on existing samples, new searches to probe a different parameter space, constrain seed masses, host galaxies, and models for BH seed formation