Detection of Jets from ULX Holmberg II X-1

D. Cseh (Radboud University Nijmegen, NL), P. Kaaret, S. Corbel, F. Grisé, C. Lang, E. Körding, H. Falcke, P. Jonker, J. Miller-Jones, S. Farrell, Y. Yang, Z. Paragi, S. Frey

We report the discovery of a triple radio structure hidden inside the radio bubble of ULX Holmberg II X-1. The morphology shows a collimated jet structure that is consistent with optically thin synchrotron ejecta. The central component, with $\alpha=0.8\pm0.2$, is much brighter than the outer ones indicating a renewed radio activity. We estimate a minimum time-averaged jet power of $\sim2\times10^{39}$ erg/s associated to a time-averaged isotropic X-ray luminosity of 4×10^{39} erg/s. These suggest that Holmberg II X-1 is a more massive black hole with $M>25$ M$_\odot$.

Introduction

- Holmberg II X-1 lies at a distance of 3.39 Mpc [1] in a dwarf irregular galaxy, that are often thought to mimic the early cosmological conditions due to their low metallicity and where massive stellar-mass black holes ($M_{bh}=20-100$ M$_\odot$) are predicted to form [2].
- From the predicted scale invariance of the accretion variability timescale and of the jets [3, 4, 5] follows that massive stellar mass black holes may show radio activity on a longer timescale.
- These powerful black holes may fundamentally regulate their environment in the form of both, jets and X-ray emission [6, 7, 8, 9], perhaps due to a higher mass and longer active cycles that may be relevant at the epoch of reionisation in the early Universe [10, 11].

Large- and fine-scale structure

The low-resolution C-band JVLA A-array image. The figure shows the large-scale, radio bubble associated to Holmberg II X-1 together with the high-resolution, fine-scale structure of Fig. 1. Lower contours represent radio emission at \sim3 times the rms noise level of 3 μJy beam$^{-1}$. Contours are increased by 1 σ and the peak brightness is 192 μJy beam$^{-1}$.

Results & Discussion

The SW and NE components appear to be extended with an average intrinsic diameter of 545 ± 60 mas (corresponding to 9.0 pc) and 405 ± 60 mas (corresponding to 6.7 pc). The central component is unresolved and we place an upper limit on its size of < 3.9 pc. We estimate the projected distance between the outer components to be 38.5 pc.

The steep spectral index and the relative brightness of the central component argues against a self- absorbed compact jet that is typically associated to an inefficient accretion state. Instead, it is consistent with optically thin compact ejecta.

We estimate the jet half opening angle to be $\sim11^\circ$ and a relativistic Mach number of the outer components of $\mathcal{M} \approx 5$. The SW and NE component are likely adiabatically expanding, decelerating plasma blobs, similar to hot spots. The minimum total energy stored in the radio bubble is $E = 2.6 \times 10^{52}$ erg, assuming no proton acceleration [9]. We find that this energy can be deposited into the environment over $t = E/Q_{j} = 390$ yr.

The isotropic X-ray luminosity needed to ionize the surrounding He II bubble is at least 4×10^{39} erg/s [12], that corresponds to average ionising rate over the past 3000 year. We find a minimum time-averaged jet power of $Q_{j} = 2.1 \times 10^{25}$ erg/s based on FRIL scaling relationship. [13]. Jet powers might only be as high as 10% of the bolometric luminosity and these estimates suggest a black hole mass of at least 25 M$_\odot$.

The VLBI component can be described by a single point source model. We find a brightness temperature of $T_B > 1.2 \times 10^{17}$ K, consistent with non-thermal emission.

Conclusions

Our results strengthen the view that physical properties of accretion and ejection are connected and scale invariant over a possibly homogeneously populated black hole mass range. Future studies may confirm a distinct formation channel of massive stellar mass black holes, that are possibly caught for a relatively short active time and evolve fast in environments akin to early cosmological conditions.

References